A proper modelling of the injection process is mandatory in 3D-CFD in-cylinder simulations, in order to predict the correct formation of the air-fuel mixture, that directly affects combustion, knock and emissions. Therefore, the main goal of this thesis is the formulation of an extensive methodology for the numerical characterization of the injection process for both gasoline and diesel sprays. In particular, the attention is focused on three different phenomena, namely primary break-up, secondary break-up and flash-boiling, which play a significant role in the spray evolution. In the present work, such aspects are investigated and an alternative solution for their modelling is proposed. Numerical simulations are carried out via commercial codes, i.e. STAR-CCM+ and STAR-CD, both licensed by Siemens. Results are validated using experimental datasets consisting of injection rate, spray imaging, liquid penetration curve, and Phase Doppler Anemometry (PDA) data. As for the primary break-up, an atomization strategy is proposed, aiming at extending simulation predictive capabilities over a wider range of operating conditions. 3D-CFD Lagrangian simulations of two different multi-hole injectors are presented. The first is a 5-hole GDI prototype unit operated at ambient conditions, while the second one is the SprayG injector released by the Engine Combustion Network (ECN), characterized by a higher back pressure. Moreover, to validate the primary break-up strategy adopted for the initialization of the droplets, an internal nozzle flow simulation is carried out on the Spray G injector, able to provide information on both velocity and diameter of the liquid jet at the nozzle exit. As for the secondary break-up, a novel model, hereafter indicated as “GruMo”, is proposed. It aims at minimizing the secondary break-up calibration efforts in Eulerian-Lagrangian simulations for both gasoline and diesel sprays. Model parameters are assumed as functions of the ambient density, which directly impacts the disruption of liquid droplets into smaller ones. The set of functions for gasoline injectors is calibrated on a single-hole GDI injector for three different operative conditions. Thereafter model validation is carried out on two different GDI injectors: the first is again a single-hole while the second is the 5-hole GDI prototype mentioned above. In case of Diesel injection, model parameters are calibrated on the well-known SprayA still provided by the ECN, which can be assumed as representative of injectors for light-duty applications. Afterwards, the model is validated on two different single-hole injectors, namely SprayC and SprayD, both representative of injectors for heavy-duty applications. The new “GruMo” model provides a good agreement between numerical and experimental outcomes for all the tested injectors, without any dedicated tuning. Conversely, the most popular models, such as Reitz-Diwakar and KHRT ones, adopted to simulate the same injectors with default calibration constants, provide results which significantly deviate from the experiments. Finally, the flash-boiling phenomenon is faced. It can potentially play a key role to achieve the required fuel distribution inside the combustion chamber over a wide range of engine operating conditions. In fact, under certain conditions, the fuel undergoes extremely accelerated break-up and quickly evaporates. In the present work, the application of an alternative flash-boiling model, recently implemented by Siemens-PLM in STAR-CD, is shown on a single-hole research injector. The new flash-boiling model consists of three main parts: an atomization model able to compute the droplet initial conditions and the overall spray cone angle; an evaporation model and a droplet secondary break-up model.

Nell’ambito di simulazioni 3D-CFD interno cilindro, una corretta modellazione del processo di iniezione è fondamentale per ottenere una valida previsione del miscelamento aria-combustibile, ovvero di combustione, autoaccensione, ed emissioni. Lo scopo principale di questa tesi è l’elaborazione di una metodologia estensiva per la caratterizzazione numerica del processo di iniezione per spray benzina e diesel. Tre fenomeni importanti per l’evoluzione dello spray sono stati analizzati: il break-up primario, il break-up secondario, ed il flash-boiling; essi sono stati analizzati ed una metodologia alternativa per la loro modellazione è proposta. Le simulazioni numeriche sono state effettuate con due codici commerciali, STAR-CCM+ e STAR-CD, entrambi rilasciati da Siemens. I risultati sono validati tramite dati sperimentali in termini di portata di iniezione, immagini di spray, curve di penetrazione, ed analisi Phase Doppler Anemometry (PDA). Per il break-up primario, una strategia di atomizzazione è proposta al fine di estendere le capacità predittive delle simulazioni per un’ampia gamma di condizioni operative. A tal scopo sono presentate simulazioni Lagrangiane 3D-CFD per due iniettori multi-foro. Il primo è un prototipo GDI 5-fori, operante a condizioni ambiente, il secondo è l’iniettore SprayG fornito dall’ Engine Combustion Network (ECN), caratterizzato da una maggiore contropressione. Con lo scopo di validare la strategia di break-up primario, è riportata una simulazione interno iniettore per lo SprayG, con la quale si ottengono informazioni sulla velocità ed il diametro della colonna liquida in uscita dal polverizzatore. Per il break-up secondario, un nuovo modello, d’ora in poi indicato come ‘GruMo’, è proposto. Lo scopo è quello di semplificare l’attività di calibrazione per il break-up secondario nelle simulazioni Euleriane-Lagrangiane per spray benzina e diesel. Pertanto, i parametri del modello vengono impostati come funzioni della densità ambiente, che incide direttamente sulla rottura delle gocce liquide. Il set di funzioni per iniettori benzina è calibrato su un iniettore mono-foro GDI per tre condizioni operative. In seguito, il modello viene validato su un differente iniettore mono-foro GDI, e sull’iniettore GDI 5-fori menzionato in precedenza. Per gli iniettori diesel i parametri del modello sono calibrati sul noto SprayA, fornito da ECN, il quale è rappresentativo di applicazioni commerciali leggere. Successivamente, il modello viene validato su due iniettori mono-foro, chiamati SprayC e SprayD, entrambi rappresentativi di applicazioni commerciali pesanti. Il modello ‘GruMo’ fornisce un buon accordo tra dati sperimentali e numerici per tutti gli iniettori testati, senza una calibrazione dedicata. Viceversa, i modelli più diffusi come il Reitz-Diwakar ed il KHRT, adottati per simulare gli stessi iniettori con costanti di calibrazione di default, forniscono risultati che differiscono significativamente dai dati sperimentali. Infine, il fenomeno di flash-boiling viene analizzato. Esso ricopre potenzialmente un ruolo chiave nel conseguimento di una distribuzione di combustibile target all’interno della camera di combustione per un ampio intervallo di condizioni operative. Infatti, in determinate condizioni, il combustibile subisce un break-up estremamente rapido che porta ad un’accelerata vaporizzazione. In questo lavoro di tesi, è presentata l’applicazione di un modello di flash-boiling alternativo, recentemente implementato da Siemens-PLM in STAR-CD, su un iniettore mono-foro da ricerca. Il nuovo approccio consiste in tre parti principali: un modello di atomizzazione che determina le condizioni iniziali delle gocce e l’angolo di cono complessivo; un modello di vaporizzazione ed un modello di break-up secondario.

Una metodologia estensiva per simulazioni Lagrangiane 3D-CFD di iniettori benzina e diesel / Simone Sparacino , 2022 Mar 14. 34. ciclo, Anno Accademico 2020/2021.

Una metodologia estensiva per simulazioni Lagrangiane 3D-CFD di iniettori benzina e diesel

SPARACINO, SIMONE
2022

Abstract

A proper modelling of the injection process is mandatory in 3D-CFD in-cylinder simulations, in order to predict the correct formation of the air-fuel mixture, that directly affects combustion, knock and emissions. Therefore, the main goal of this thesis is the formulation of an extensive methodology for the numerical characterization of the injection process for both gasoline and diesel sprays. In particular, the attention is focused on three different phenomena, namely primary break-up, secondary break-up and flash-boiling, which play a significant role in the spray evolution. In the present work, such aspects are investigated and an alternative solution for their modelling is proposed. Numerical simulations are carried out via commercial codes, i.e. STAR-CCM+ and STAR-CD, both licensed by Siemens. Results are validated using experimental datasets consisting of injection rate, spray imaging, liquid penetration curve, and Phase Doppler Anemometry (PDA) data. As for the primary break-up, an atomization strategy is proposed, aiming at extending simulation predictive capabilities over a wider range of operating conditions. 3D-CFD Lagrangian simulations of two different multi-hole injectors are presented. The first is a 5-hole GDI prototype unit operated at ambient conditions, while the second one is the SprayG injector released by the Engine Combustion Network (ECN), characterized by a higher back pressure. Moreover, to validate the primary break-up strategy adopted for the initialization of the droplets, an internal nozzle flow simulation is carried out on the Spray G injector, able to provide information on both velocity and diameter of the liquid jet at the nozzle exit. As for the secondary break-up, a novel model, hereafter indicated as “GruMo”, is proposed. It aims at minimizing the secondary break-up calibration efforts in Eulerian-Lagrangian simulations for both gasoline and diesel sprays. Model parameters are assumed as functions of the ambient density, which directly impacts the disruption of liquid droplets into smaller ones. The set of functions for gasoline injectors is calibrated on a single-hole GDI injector for three different operative conditions. Thereafter model validation is carried out on two different GDI injectors: the first is again a single-hole while the second is the 5-hole GDI prototype mentioned above. In case of Diesel injection, model parameters are calibrated on the well-known SprayA still provided by the ECN, which can be assumed as representative of injectors for light-duty applications. Afterwards, the model is validated on two different single-hole injectors, namely SprayC and SprayD, both representative of injectors for heavy-duty applications. The new “GruMo” model provides a good agreement between numerical and experimental outcomes for all the tested injectors, without any dedicated tuning. Conversely, the most popular models, such as Reitz-Diwakar and KHRT ones, adopted to simulate the same injectors with default calibration constants, provide results which significantly deviate from the experiments. Finally, the flash-boiling phenomenon is faced. It can potentially play a key role to achieve the required fuel distribution inside the combustion chamber over a wide range of engine operating conditions. In fact, under certain conditions, the fuel undergoes extremely accelerated break-up and quickly evaporates. In the present work, the application of an alternative flash-boiling model, recently implemented by Siemens-PLM in STAR-CD, is shown on a single-hole research injector. The new flash-boiling model consists of three main parts: an atomization model able to compute the droplet initial conditions and the overall spray cone angle; an evaporation model and a droplet secondary break-up model.
An extensive methodology for 3D-CFD Lagrangian simulations of both gasoline and diesel sprays
14-mar-2022
FONTANESI, Stefano
BERNI, FABIO
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Sparacino_final.pdf

Open Access dal 14/09/2023

Descrizione: TESI DEFINITIVA SIMONE SPARACINO
Tipologia: Tesi di dottorato
Dimensione 6.98 MB
Formato Adobe PDF
6.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1270083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact