The aim of this research project is the study and development of new high-performance construction materials, namely geopolymers, more sustainable than those already widely on the market (such as Ordinary Portland Cement-OPC), obtained from the recovery of industrial waste materials, for an environmental protection and sustainable development. The exploitation of different kinds of clayey waste -halloysitic, kaolinitic and smectitic - from mining operations, as potential precursor of geopolymeric materials in the view of a circular economy of mines is the main goal of this study. The influence of the main experimental variables such as type of the aluminosilicate powder, curing condition and temperature, composition of activating solution and molar Si:Al cation ratios on the geopolymerization process were deepened to achieve the finest properties of the final products. The influence of the calcination temperature on the reactivity of the aluminosilicate powders and on the properties of the final products were investigated. The mix design of formulations started with the use of clays as received without any firing pre-treatment and it was continued with the use of calcined clays. The clays were thermally treated at the temperature of 400-650°C. Then, the addition of low percentages of reactive fillers, specifically a sand from a clay washing process, waste glass powder, and a commercial metakaolin (MK), into the mix design of waste clay-based materials was evaluated to improve the chemical-physical properties and the consolidation degree of the materials. In fact, these clays alone are often not sufficiently reactive to obtain chemically stable formulations with acceptable mechanical properties but require the addition of reactive fillers. The alkali activators used in the formulations are NaOH 8M and Na2SiO3. Samples were cured at room temperature, except for a particular set of samples made with untreated clay and cured in conditions of controlled temperatures and humidity. Samples obtained were characterized to evaluate the influence of synthesis parameters on the microstructure and chemical and mechanical resistance. The chemical stability was analysed with the pH and ionic conductivity of leachate water and weight loss. The comparison of setting times was evaluated with the Vicat needle test. The variations on the microstructure were observed with density, XRD and SEM analysis, and tested the mechanical performance with the compressive strength. From this study, good formulations of high-performance materials based on clayey waste, consolidated at room temperature during 24-48 h, with compressive strength of 20-30 MPa were obtained. Thermal and dilatometric characterizations were also carried out on the best formulations to assess their resistance to heating. In alignment with the Circular Economy approach, this research activity shows a possible route of valorisation for different typologies of mining waste materials widely available to create alternative binders with reduced environmental impact and good performances. Additionally, the room temperature consolidation via alkaline activation of low cost Na-bearing solutions is also proposed to keep costs in line with cheap building materials. Apart from the aqueous solution, the proposed technology has no-water consumption. It should also be noted that the proposed materials processing does not, in turn, generate waste, thus closing the loop of green economy circle with no-water and no-waste manufacturing proposal.

Lo scopo di questo progetto di tesi è lo studio e lo sviluppo di nuovi materiali da costruzione ad alte prestazioni, denominati geopolimeri, più sostenibili di quelli già ampiamente presenti sul mercato (come il cemento Portland), ottenuti dal recupero di materiali di scarto industriale nel rispetto dell'ambiente e lo sviluppo sostenibile. L'obiettivo principale è lo sfruttamento di varie tipologie di rifiuti argillosi (argille halloisitiche, caolinitiche e smectitiche) provenienti da operazioni minerarie, come potenziali precursori di materiali geopolimerici in un’ottica di economia circolare degli scarti da operazioni di estrazione mineraria. Sono stati approfonditi gli effetti delle principali variabili sperimentali, come la tipologia di matrice allumino silicatica, le condizioni e la temperatura dei tempi di presa, la composizione della soluzione attivante e i rapporti molari dei cationi Si:Al sul processo di geopolimerizzazione con la finalità ultima di ottenere le migliori proprietà dei prodotti finali. È stata studiata anche l'influenza della temperatura di calcinazione sulla reattività delle polveri allumino silicatiche e sulle proprietà dei materiali finali. Inizialmente il mix design delle formulazioni è stato focalizzato sull’utilizzo delle argille tal quali senza alcun pretrattamento di calcinazione. Successivamente sono state studiate le formulazioni con le argille calcinate, trattate a diverse temperature tra i 400-650°C. In seguito, è stata valutata l'aggiunta nel mix design della matrice di argilla, di basse percentuali di fillers reattivi, in particolare una sabbia ottenuta da un processo di lavaggio dell'argilla, una polvere di scarto di vetro di campana e un metacaolino commerciale (MK), per migliorare le proprietà chimico-fisiche e il grado di consolidamento dei materiali. Infatti, queste argille spesso non sono sufficientemente reattive per ottenere da sole formulazioni chimicamente stabili con proprietà meccaniche accettabili ma richiedono l'aggiunta di cariche reattive. Gli attivatori alcalini utilizzati nelle formulazioni sono NaOH 8M e Na2SiO3. I campioni sono stati realizzati a temperatura ambiente, ad eccezione di una serie di campioni realizzati con argilla non trattata e reticolati in condizioni di temperatura e umidità controllate. I campioni ottenuti, sono stati caratterizzati in termini di microstruttura e resistenza chimica e meccanica. La stabilità chimica è stata determinata con misure di pH e di conducibilità ionica dell'acqua di lisciviazione e la perdita in peso. Le variazioni sulla microstruttura sono state osservate con analisi di densità, XRD e SEM e testate le prestazioni meccaniche con la resistenza alla compressione. I tempi di presa del mix geopolimerico è stato studiato con il test con ago Vicat. Da questo studio sono state ottenute buone formulazioni di materiali ad alte prestazioni, consolidati a temperatura ambiente entro le 24-48h, con resistenza a compressione di circa 20-30 MPa. Sulla formulazione migliore sono state effettuate anche delle caratterizzazioni termiche e dilatometriche per valutarne la resistenza al riscaldamento. In linea con l'approccio dell'Economia Circolare, questa attività di ricerca mostra un possibile percorso di valorizzazione per diverse tipologie di materiali di scarto minerario ampiamente disponibili per creare leganti alternativi con ridotto impatto ambientale. Il consolidamento proposto a temperatura ambiente tramite attivazione alcalina di soluzioni a basso costo contenenti Na mantentiene i costi in linea con materiali da costruzione economici. A parte la soluzione acquosa, la tecnologia proposta non prevede consumi idrici, non genera a sua volta rifiuti, chiudendo così il ciclo dell'economia verde con una proposta di produzione senza acqua e senza rifiuti.

Studio di formulazioni di geopolimeri a basso impatto ambientale / Caterina Sgarlata , 2022 Mar 14. 34. ciclo, Anno Accademico 2020/2021.

Studio di formulazioni di geopolimeri a basso impatto ambientale

SGARLATA, CATERINA
2022

Abstract

The aim of this research project is the study and development of new high-performance construction materials, namely geopolymers, more sustainable than those already widely on the market (such as Ordinary Portland Cement-OPC), obtained from the recovery of industrial waste materials, for an environmental protection and sustainable development. The exploitation of different kinds of clayey waste -halloysitic, kaolinitic and smectitic - from mining operations, as potential precursor of geopolymeric materials in the view of a circular economy of mines is the main goal of this study. The influence of the main experimental variables such as type of the aluminosilicate powder, curing condition and temperature, composition of activating solution and molar Si:Al cation ratios on the geopolymerization process were deepened to achieve the finest properties of the final products. The influence of the calcination temperature on the reactivity of the aluminosilicate powders and on the properties of the final products were investigated. The mix design of formulations started with the use of clays as received without any firing pre-treatment and it was continued with the use of calcined clays. The clays were thermally treated at the temperature of 400-650°C. Then, the addition of low percentages of reactive fillers, specifically a sand from a clay washing process, waste glass powder, and a commercial metakaolin (MK), into the mix design of waste clay-based materials was evaluated to improve the chemical-physical properties and the consolidation degree of the materials. In fact, these clays alone are often not sufficiently reactive to obtain chemically stable formulations with acceptable mechanical properties but require the addition of reactive fillers. The alkali activators used in the formulations are NaOH 8M and Na2SiO3. Samples were cured at room temperature, except for a particular set of samples made with untreated clay and cured in conditions of controlled temperatures and humidity. Samples obtained were characterized to evaluate the influence of synthesis parameters on the microstructure and chemical and mechanical resistance. The chemical stability was analysed with the pH and ionic conductivity of leachate water and weight loss. The comparison of setting times was evaluated with the Vicat needle test. The variations on the microstructure were observed with density, XRD and SEM analysis, and tested the mechanical performance with the compressive strength. From this study, good formulations of high-performance materials based on clayey waste, consolidated at room temperature during 24-48 h, with compressive strength of 20-30 MPa were obtained. Thermal and dilatometric characterizations were also carried out on the best formulations to assess their resistance to heating. In alignment with the Circular Economy approach, this research activity shows a possible route of valorisation for different typologies of mining waste materials widely available to create alternative binders with reduced environmental impact and good performances. Additionally, the room temperature consolidation via alkaline activation of low cost Na-bearing solutions is also proposed to keep costs in line with cheap building materials. Apart from the aqueous solution, the proposed technology has no-water consumption. It should also be noted that the proposed materials processing does not, in turn, generate waste, thus closing the loop of green economy circle with no-water and no-waste manufacturing proposal.
Study of Sustainable Geopolymer Formulations
14-mar-2022
SILIGARDI, Cristina
LEONELLI, Cristina
File in questo prodotto:
File Dimensione Formato  
Tesi definitiva Sgarlata Caterina.pdf

embargo fino al 13/03/2025

Descrizione: Tesi definitiva Sgarlata Caterina
Tipologia: Tesi di dottorato
Dimensione 12.88 MB
Formato Adobe PDF
12.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1270082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact