Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of C-C bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.

Graphene Confers Ultralow Friction on Nanogear Cogs / Mescola, A.; Paolicelli, G.; Ogilvie, S. P.; Guarino, R.; McHugh, J. G.; Rota, A.; Iacob, E.; Gnecco, E.; Valeri, S.; Pugno, N. M.; Gadhamshetty, V.; Rahman, M. M.; Ajayan, P.; Dalton, A. B.; Tripathi, M.. - In: SMALL. - ISSN 1613-6810. - 17:47(2021), pp. e2104487-N/A. [10.1002/smll.202104487]

Graphene Confers Ultralow Friction on Nanogear Cogs

Paolicelli G.;Rota A.;Valeri S.;Tripathi M.
2021

Abstract

Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of C-C bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.
2021
17
47
e2104487
N/A
Graphene Confers Ultralow Friction on Nanogear Cogs / Mescola, A.; Paolicelli, G.; Ogilvie, S. P.; Guarino, R.; McHugh, J. G.; Rota, A.; Iacob, E.; Gnecco, E.; Valeri, S.; Pugno, N. M.; Gadhamshetty, V.; Rahman, M. M.; Ajayan, P.; Dalton, A. B.; Tripathi, M.. - In: SMALL. - ISSN 1613-6810. - 17:47(2021), pp. e2104487-N/A. [10.1002/smll.202104487]
Mescola, A.; Paolicelli, G.; Ogilvie, S. P.; Guarino, R.; McHugh, J. G.; Rota, A.; Iacob, E.; Gnecco, E.; Valeri, S.; Pugno, N. M.; Gadhamshetty, V.; Rahman, M. M.; Ajayan, P.; Dalton, A. B.; Tripathi, M.
File in questo prodotto:
File Dimensione Formato  
Small - 2021 - Mescola - Graphene Confers Ultralow Friction on Nanogear Cogs.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1265004
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact