Hand movement recognition via surface electromyographic (sEMG) signal is a promising approach for the advance in Human-Computer Interaction. However, this field has to deal with two main issues: (1) the long-term reliability of sEMG-based control is limited by the variability affecting the sEMG signal (especially, variability over time); (2) the classification algorithms need to be suitable for implementation on embedded devices, which have strict constraints in terms of power budget and computational resources. Current solutions present a performance over-time drop that makes them unsuitable for reliable gesture controller design. In this paper, we address temporal variability of sEMG-based grasp recognition, proposing a new approach based on Temporal Convolutional Networks, a class of deep learning algorithms particularly suited for time series analysis and temporal pattern recognition. Our approach improves by 7.6% the best results achieved in the literature on the NinaPro DB6, a reference dataset for temporal variability analysis of sEMG. Moreover, when targeting the much more challenging inter-session accuracy objective, our method achieves an accuracy drop of just 4.8% between intra- and inter-session validation. This proves the suitability of our setup for a robust, reliable long-term implementation. Furthermore, we distill the network using deep network quantization and pruning techniques, demonstrating that our approach can use down to 120 lower memory footprint than the initial network and 4 lower memory footprint than a baseline Support Vector Machine, with an inter-session accuracy degradation of only 2.5%, proving that the solution is suitable for embedded resource-constrained implementations.

Temporal Variability Analysis in sEMG Hand Grasp Recognition using Temporal Convolutional Networks / Zanghieri, M.; Benatti, S.; Conti, F.; Burrello, A.; Benini, L.. - (2020), pp. 228-232. (Intervento presentato al convegno 2020 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2020 tenutosi a ita nel 2020) [10.1109/AICAS48895.2020.9073888].

Temporal Variability Analysis in sEMG Hand Grasp Recognition using Temporal Convolutional Networks

Benatti S.;
2020

Abstract

Hand movement recognition via surface electromyographic (sEMG) signal is a promising approach for the advance in Human-Computer Interaction. However, this field has to deal with two main issues: (1) the long-term reliability of sEMG-based control is limited by the variability affecting the sEMG signal (especially, variability over time); (2) the classification algorithms need to be suitable for implementation on embedded devices, which have strict constraints in terms of power budget and computational resources. Current solutions present a performance over-time drop that makes them unsuitable for reliable gesture controller design. In this paper, we address temporal variability of sEMG-based grasp recognition, proposing a new approach based on Temporal Convolutional Networks, a class of deep learning algorithms particularly suited for time series analysis and temporal pattern recognition. Our approach improves by 7.6% the best results achieved in the literature on the NinaPro DB6, a reference dataset for temporal variability analysis of sEMG. Moreover, when targeting the much more challenging inter-session accuracy objective, our method achieves an accuracy drop of just 4.8% between intra- and inter-session validation. This proves the suitability of our setup for a robust, reliable long-term implementation. Furthermore, we distill the network using deep network quantization and pruning techniques, demonstrating that our approach can use down to 120 lower memory footprint than the initial network and 4 lower memory footprint than a baseline Support Vector Machine, with an inter-session accuracy degradation of only 2.5%, proving that the solution is suitable for embedded resource-constrained implementations.
2020
2020 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2020
ita
2020
228
232
Zanghieri, M.; Benatti, S.; Conti, F.; Burrello, A.; Benini, L.
Temporal Variability Analysis in sEMG Hand Grasp Recognition using Temporal Convolutional Networks / Zanghieri, M.; Benatti, S.; Conti, F.; Burrello, A.; Benini, L.. - (2020), pp. 228-232. (Intervento presentato al convegno 2020 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2020 tenutosi a ita nel 2020) [10.1109/AICAS48895.2020.9073888].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1264920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact