Real-Time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-The-Art high-end systems both in terms of recognition accuracy (>S5%) and of real-Time execution (gesture recognition time 300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.

A sub-10mW real-Time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC / Benatti, S.; Rovere, G.; Bosser, J.; Montagna, F.; Farella, E.; Glaser, H.; Schonle, P.; Burger, T.; Fateh, S.; Huang, Q.; Benini, L.. - (2017), pp. 139-144. (Intervento presentato al convegno 7th International Workshop on Advances in Sensors and Interfaces, IWASI 2017 tenutosi a ita nel 2017) [10.1109/IWASI.2017.7974234].

A sub-10mW real-Time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC

Benatti S.;
2017

Abstract

Real-Time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-The-Art high-end systems both in terms of recognition accuracy (>S5%) and of real-Time execution (gesture recognition time 300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.
2017
7th International Workshop on Advances in Sensors and Interfaces, IWASI 2017
ita
2017
139
144
Benatti, S.; Rovere, G.; Bosser, J.; Montagna, F.; Farella, E.; Glaser, H.; Schonle, P.; Burger, T.; Fateh, S.; Huang, Q.; Benini, L.
A sub-10mW real-Time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC / Benatti, S.; Rovere, G.; Bosser, J.; Montagna, F.; Farella, E.; Glaser, H.; Schonle, P.; Burger, T.; Fateh, S.; Huang, Q.; Benini, L.. - (2017), pp. 139-144. (Intervento presentato al convegno 7th International Workshop on Advances in Sensors and Interfaces, IWASI 2017 tenutosi a ita nel 2017) [10.1109/IWASI.2017.7974234].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1264855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 18
social impact