Conditioning and processing of biological signals represent interesting challenges for wearable electronics in health applications. Information gathering from these signals requires complex hardware circuitry and dedicated computation resources. The design of innovative analog front-end integrated circuits, combined with efficient signal processing algorithms, allows the development of platforms for monitoring, activity and gesture recognition based on embedded real-time systems. This paper describes an Electromyography pattern recognition system based on the combination of low cost passive sensors, an innovative analog front-end and a low power microcontroller. The performance of the proposed system matches state-of-the-art high-end active sensors, opening the way to the development of affordable and accurate wearable devices.

EMG-based hand gesture recognition with flexible analog front end / Benatti, S.; Milosevic, B.; Casamassima, F.; Schonle, P.; Bunjaku, P.; Fateh, S.; Huang, Q.; Benini, L.. - (2014), pp. 57-60. (Intervento presentato al convegno 10th IEEE Biomedical Circuits and Systems Conference, BioCAS 2014 tenutosi a EPFL, che nel 2014) [10.1109/BioCAS.2014.6981644].

EMG-based hand gesture recognition with flexible analog front end

Benatti S.;
2014

Abstract

Conditioning and processing of biological signals represent interesting challenges for wearable electronics in health applications. Information gathering from these signals requires complex hardware circuitry and dedicated computation resources. The design of innovative analog front-end integrated circuits, combined with efficient signal processing algorithms, allows the development of platforms for monitoring, activity and gesture recognition based on embedded real-time systems. This paper describes an Electromyography pattern recognition system based on the combination of low cost passive sensors, an innovative analog front-end and a low power microcontroller. The performance of the proposed system matches state-of-the-art high-end active sensors, opening the way to the development of affordable and accurate wearable devices.
2014
10th IEEE Biomedical Circuits and Systems Conference, BioCAS 2014
EPFL, che
2014
57
60
Benatti, S.; Milosevic, B.; Casamassima, F.; Schonle, P.; Bunjaku, P.; Fateh, S.; Huang, Q.; Benini, L.
EMG-based hand gesture recognition with flexible analog front end / Benatti, S.; Milosevic, B.; Casamassima, F.; Schonle, P.; Bunjaku, P.; Fateh, S.; Huang, Q.; Benini, L.. - (2014), pp. 57-60. (Intervento presentato al convegno 10th IEEE Biomedical Circuits and Systems Conference, BioCAS 2014 tenutosi a EPFL, che nel 2014) [10.1109/BioCAS.2014.6981644].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1264843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact