Light detection and rangings (LiDARs) are considered essential for the environmental sensing required by most advanced driver assistance system (ADAS), including autonomous driving. This has led to significant investments resulted in the availability of countless measuring systems that are increasingly performing and less expensive. Nevertheless, the extremely high speed of light still leads to a nonnegligible quantization error in the direct time-of-flight (ToF) measure at the base of pulsed LiDARs—the leading technology for automotive applications. Hence, pulsed 3-D LiDARs analyze the surrounding by approximating and deforming it on concentric spheres whose radii are quantized with a quantization step that, for most commercial systems, is on the order of some centimeters. The deformation and error introduced by such quantization can thus be significant. In this study, we point out the approximations and assumptions intrinsic to 3-D LiDARs and propose a measurement procedure that, through the analysis of the fine variations of the target position, allows an accurate investigation of the axial resolution and error—probably among the few limitations still affecting this technology. To the best of our knowledge, this is the first study focused on the detailed analysis of the quantization error in 3-D LiDARs. The proposed method has been tested on one of the most popular 3-D LiDARs, namely the MRS 6000 by Sick. The obtained results revealed for the MRS 6000 a quantization step of about 6 cm (ToF quantization of about 0.4 ns) and an axial error normally distributed with experimental standard deviation of about 30 mm.

Analysis, quantification, and discussion of the approximations introduced by pulsed 3-D lidars / Cattini, S.; Cassanelli, D.; Di Loro, G.; Di Cecilia, L.; Ferrari, L.; Rovati, L.. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - 70:(2021), pp. 1-11. [10.1109/TIM.2021.3124038]

Analysis, quantification, and discussion of the approximations introduced by pulsed 3-D lidars

Cattini S.;Cassanelli D.;Rovati L.
2021

Abstract

Light detection and rangings (LiDARs) are considered essential for the environmental sensing required by most advanced driver assistance system (ADAS), including autonomous driving. This has led to significant investments resulted in the availability of countless measuring systems that are increasingly performing and less expensive. Nevertheless, the extremely high speed of light still leads to a nonnegligible quantization error in the direct time-of-flight (ToF) measure at the base of pulsed LiDARs—the leading technology for automotive applications. Hence, pulsed 3-D LiDARs analyze the surrounding by approximating and deforming it on concentric spheres whose radii are quantized with a quantization step that, for most commercial systems, is on the order of some centimeters. The deformation and error introduced by such quantization can thus be significant. In this study, we point out the approximations and assumptions intrinsic to 3-D LiDARs and propose a measurement procedure that, through the analysis of the fine variations of the target position, allows an accurate investigation of the axial resolution and error—probably among the few limitations still affecting this technology. To the best of our knowledge, this is the first study focused on the detailed analysis of the quantization error in 3-D LiDARs. The proposed method has been tested on one of the most popular 3-D LiDARs, namely the MRS 6000 by Sick. The obtained results revealed for the MRS 6000 a quantization step of about 6 cm (ToF quantization of about 0.4 ns) and an axial error normally distributed with experimental standard deviation of about 30 mm.
2021
70
1
11
Analysis, quantification, and discussion of the approximations introduced by pulsed 3-D lidars / Cattini, S.; Cassanelli, D.; Di Loro, G.; Di Cecilia, L.; Ferrari, L.; Rovati, L.. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - 70:(2021), pp. 1-11. [10.1109/TIM.2021.3124038]
Cattini, S.; Cassanelli, D.; Di Loro, G.; Di Cecilia, L.; Ferrari, L.; Rovati, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1264700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact