Purpose: To determine the trueness and precision of frameworks manufactured with a selective laser melting/milling hybrid technique (SLM/m) and conventional milling by comparing the implant-platform/framework interface with those of the original computer-aided design (CAD). Materials and Methods: Using a virtual 6-implant-supported full-arch framework CAD drawing, 27 titanium replicas were manufactured by 3 independent manufacturing centers (n = 9/center) using a hybrid SLM/m technology (labs 1 and 2) or the conventional milling technique (lab 3). Using an opto-mechanical coordinate measuring machine, the frameworks’ misfit distribution and patterns were analyzed, and the position error between paired platform positions within each framework was evaluated to calculate the misfit tendency for each group. A multilevel analysis using a mixed-effects model was conducted (α = 0.05). The trueness was evaluated as the dimensional difference from the original, while the precision as the dimensional difference from a repeated scan. Results: The 3 dimensional misfits differed significantly among the 3 groups, with the milled group exhibiting the least accurate outcome (p = 0.005). The mean 3D positioning errors ranged from 8 to 16 µm and from 9 to 22 µm for the SLM/m technique (labs 1 and 2, respectively), and from 20 to 35 µm for conventional milling (lab 3). Regarding the misfit distribution pattern, the misfit increased with the distance between paired platform positions in all groups. Conclusions: All groups had 3D misfits well within the error limits reported in the literature. The 3D misfits of new hybrid (SLM/milling) and conventional (milling) procedures differed significantly among them, with the milling technique the less accurate and precise. The largest errors in all groups were found between the most distant implants, resulting in a correlation between the framework span and the inaccuracies.

Manufacturing of Metal Frameworks for Full-Arch Dental Restoration on Implants: A Comparison between Milling and a Novel Hybrid Technology / Ciocca, L.; Meneghello, R.; Savio, G.; Scheda, L.; Monaco, C.; Gatto, M. R.; Micarelli, C.; Baldissara, P.. - In: JOURNAL OF PROSTHODONTICS. - ISSN 1059-941X. - 28:5(2019), pp. 556-563. [10.1111/jopr.13067]

Manufacturing of Metal Frameworks for Full-Arch Dental Restoration on Implants: A Comparison between Milling and a Novel Hybrid Technology

Monaco C.;
2019

Abstract

Purpose: To determine the trueness and precision of frameworks manufactured with a selective laser melting/milling hybrid technique (SLM/m) and conventional milling by comparing the implant-platform/framework interface with those of the original computer-aided design (CAD). Materials and Methods: Using a virtual 6-implant-supported full-arch framework CAD drawing, 27 titanium replicas were manufactured by 3 independent manufacturing centers (n = 9/center) using a hybrid SLM/m technology (labs 1 and 2) or the conventional milling technique (lab 3). Using an opto-mechanical coordinate measuring machine, the frameworks’ misfit distribution and patterns were analyzed, and the position error between paired platform positions within each framework was evaluated to calculate the misfit tendency for each group. A multilevel analysis using a mixed-effects model was conducted (α = 0.05). The trueness was evaluated as the dimensional difference from the original, while the precision as the dimensional difference from a repeated scan. Results: The 3 dimensional misfits differed significantly among the 3 groups, with the milled group exhibiting the least accurate outcome (p = 0.005). The mean 3D positioning errors ranged from 8 to 16 µm and from 9 to 22 µm for the SLM/m technique (labs 1 and 2, respectively), and from 20 to 35 µm for conventional milling (lab 3). Regarding the misfit distribution pattern, the misfit increased with the distance between paired platform positions in all groups. Conclusions: All groups had 3D misfits well within the error limits reported in the literature. The 3D misfits of new hybrid (SLM/milling) and conventional (milling) procedures differed significantly among them, with the milling technique the less accurate and precise. The largest errors in all groups were found between the most distant implants, resulting in a correlation between the framework span and the inaccuracies.
2019
28
5
556
563
Manufacturing of Metal Frameworks for Full-Arch Dental Restoration on Implants: A Comparison between Milling and a Novel Hybrid Technology / Ciocca, L.; Meneghello, R.; Savio, G.; Scheda, L.; Monaco, C.; Gatto, M. R.; Micarelli, C.; Baldissara, P.. - In: JOURNAL OF PROSTHODONTICS. - ISSN 1059-941X. - 28:5(2019), pp. 556-563. [10.1111/jopr.13067]
Ciocca, L.; Meneghello, R.; Savio, G.; Scheda, L.; Monaco, C.; Gatto, M. R.; Micarelli, C.; Baldissara, P.
File in questo prodotto:
File Dimensione Formato  
jopr.13067.pdf

Accesso riservato

Dimensione 615.04 kB
Formato Adobe PDF
615.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1264604
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact