In this paper, we aim to understand whether current language and vision (LaVi) models truly grasp the interaction between the two modalities. To this end, we propose an extension of the MS-COCO dataset, FOIL-COCO, which associates images with both correct and ‘foil’ captions, that is, descriptions of the image that are highly similar to the original ones, but contain one single mistake (‘foil word’). We show that current LaVi models fall into the traps of this data and perform badly on three tasks: a) caption classification (correct vs. foil); b) foil word detection; c) foil word correction. Humans, in contrast, have near-perfect performance on those tasks. We demonstrate that merely utilising language cues is not enough to model FOIL-COCO and that it challenges the state-of-the-art by requiring a fine-grained understanding of the relation between text and image.
FOIL it! Find One mismatch between Image and Language caption / Shekhar, Ravi; Pezzelle, Sandro; Klimovich, Yauhen; Herbelot, Aurelie; Nabi, Moin; Sangineto, Enver; Bernardi, Raffaella. - (2017), pp. 255-265. (Intervento presentato al convegno 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 tenutosi a Vancouver nel July 30th - August 4th, 2017) [10.18653/v1/P17-1024 ].
FOIL it! Find One mismatch between Image and Language caption
Sangineto, Enver;
2017
Abstract
In this paper, we aim to understand whether current language and vision (LaVi) models truly grasp the interaction between the two modalities. To this end, we propose an extension of the MS-COCO dataset, FOIL-COCO, which associates images with both correct and ‘foil’ captions, that is, descriptions of the image that are highly similar to the original ones, but contain one single mistake (‘foil word’). We show that current LaVi models fall into the traps of this data and perform badly on three tasks: a) caption classification (correct vs. foil); b) foil word detection; c) foil word correction. Humans, in contrast, have near-perfect performance on those tasks. We demonstrate that merely utilising language cues is not enough to model FOIL-COCO and that it challenges the state-of-the-art by requiring a fine-grained understanding of the relation between text and image.File | Dimensione | Formato | |
---|---|---|---|
foil_acl17.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris