FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.

Mechanism of O2 diffusion and reduction in FeFe hydrogenases / Kubas, A.; Orain, C.; De Sancho, D.; Saujet, L.; Sensi, M.; Gauquelin, C.; Meynial-Salles, I.; Soucaille, P.; Bottin, H.; Baffert, C.; Fourmond, V.; Best, R. B.; Blumberger, J.; Leger, C.. - In: NATURE CHEMISTRY. - ISSN 1755-4330. - 9:1(2017), pp. 88-95. [10.1038/nchem.2592]

Mechanism of O2 diffusion and reduction in FeFe hydrogenases

Sensi M.;
2017

Abstract

FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
2017
9
1
88
95
Mechanism of O2 diffusion and reduction in FeFe hydrogenases / Kubas, A.; Orain, C.; De Sancho, D.; Saujet, L.; Sensi, M.; Gauquelin, C.; Meynial-Salles, I.; Soucaille, P.; Bottin, H.; Baffert, C.; Fourmond, V.; Best, R. B.; Blumberger, J.; Leger, C.. - In: NATURE CHEMISTRY. - ISSN 1755-4330. - 9:1(2017), pp. 88-95. [10.1038/nchem.2592]
Kubas, A.; Orain, C.; De Sancho, D.; Saujet, L.; Sensi, M.; Gauquelin, C.; Meynial-Salles, I.; Soucaille, P.; Bottin, H.; Baffert, C.; Fourmond, V.; Best, R. B.; Blumberger, J.; Leger, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1264304
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 97
social impact