Photoelectrochemical (PEC) water splitting is a promising approach for generating hydrogen from water. In order to enhance PEC water splitting efficiency, it is essential to inhibit the production of the hydrogen peroxide byproduct and to reduce the overpotential required by an inexpensive catalyst and with high current density. In the past, it was shown that coating TiO2 electrodes by chiral molecules or chiral films enhances the hydrogen production and reduces the production of H2O2 byproduct. This was explained to be a result of the chiral-induced spin selectivity (CISS) effect that induces spin correlation between the electrons transferred to the anode. However, typically the current observed in those studies was in the range of 1-100 μA/cm2. Here we report currents in the range of 10 mA/cm2 obtained by adsorbing chiral molecules on a well-established Fe3O4 nanoparticle (NP) catalyst deposited on the anode. The results indicate a new strategy for designing low-cost earth-abundant catalysts where the advantages of the CISS effect are combined with the large effective area provided by the NPs to promote PEC water splitting with high current density.
Enhanced Electrochemical Water Splitting with Chiral Molecule-Coated Fe3O4 Nanoparticles / Zhang, W.; Banerjee-Ghosh, K.; Tassinari, F.; Naaman, R.. - In: ACS ENERGY LETTERS. - ISSN 2380-8195. - 3:10(2018), pp. 2308-2313. [10.1021/acsenergylett.8b01454]
Enhanced Electrochemical Water Splitting with Chiral Molecule-Coated Fe3O4 Nanoparticles
Tassinari F.;Naaman R.
2018
Abstract
Photoelectrochemical (PEC) water splitting is a promising approach for generating hydrogen from water. In order to enhance PEC water splitting efficiency, it is essential to inhibit the production of the hydrogen peroxide byproduct and to reduce the overpotential required by an inexpensive catalyst and with high current density. In the past, it was shown that coating TiO2 electrodes by chiral molecules or chiral films enhances the hydrogen production and reduces the production of H2O2 byproduct. This was explained to be a result of the chiral-induced spin selectivity (CISS) effect that induces spin correlation between the electrons transferred to the anode. However, typically the current observed in those studies was in the range of 1-100 μA/cm2. Here we report currents in the range of 10 mA/cm2 obtained by adsorbing chiral molecules on a well-established Fe3O4 nanoparticle (NP) catalyst deposited on the anode. The results indicate a new strategy for designing low-cost earth-abundant catalysts where the advantages of the CISS effect are combined with the large effective area provided by the NPs to promote PEC water splitting with high current density.File | Dimensione | Formato | |
---|---|---|---|
Enhanced Electrochemical Water Splitting with Chiral Molecule-Coated Fe3O4 Nanoparticles.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris