It is established that electron transmission through chiral molecules depends on the electron's spin. This phenomenon, termed the chiral-induced spin selectivity (CISS), effect has been observed in chiral molecules, supramolecular structures, polymers, and metal-organic films. Which spin is preferred in the transmission depends on the handedness of the system and the tunneling direction of the electrons. Molecular motors based on overcrowded alkenes show multiple inversions of helical chirality under light irradiation and thermal relaxation. The authors found here multistate switching of spin selectivity in electron transfer through first generation molecular motors based on the four accessible distinct helical configurations, measured by magnetic-conductive atomic force microscopy. It is shown that the helical state dictates the molecular organization on the surface. The efficient spin polarization observed in the photostationary state of the right-handed motor coupled with the modulation of spin selectivity through the controlled sequence of helical states, opens opportunities to tune spin selectivity on-demand with high spatio-temporal precision. An energetic analysis correlates the spin injection barrier with the extent of spin polarization.
Multistate Switching of Spin Selectivity in Electron Transport through Light-Driven Molecular Motors / Zhu, Q.; Danowski, W.; Mondal, A. K.; Tassinari, F.; van Beek, C. L. F.; Heideman, G. H.; Santra, K.; Cohen, S. R.; Feringa, B. L.; Naaman, R.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - 8:18(2021), pp. e2101773-7. [10.1002/advs.202101773]
Multistate Switching of Spin Selectivity in Electron Transport through Light-Driven Molecular Motors
Tassinari F.;Naaman R.
2021
Abstract
It is established that electron transmission through chiral molecules depends on the electron's spin. This phenomenon, termed the chiral-induced spin selectivity (CISS), effect has been observed in chiral molecules, supramolecular structures, polymers, and metal-organic films. Which spin is preferred in the transmission depends on the handedness of the system and the tunneling direction of the electrons. Molecular motors based on overcrowded alkenes show multiple inversions of helical chirality under light irradiation and thermal relaxation. The authors found here multistate switching of spin selectivity in electron transfer through first generation molecular motors based on the four accessible distinct helical configurations, measured by magnetic-conductive atomic force microscopy. It is shown that the helical state dictates the molecular organization on the surface. The efficient spin polarization observed in the photostationary state of the right-handed motor coupled with the modulation of spin selectivity through the controlled sequence of helical states, opens opportunities to tune spin selectivity on-demand with high spatio-temporal precision. An energetic analysis correlates the spin injection barrier with the extent of spin polarization.File | Dimensione | Formato | |
---|---|---|---|
Multistate Switching of Spin Selectivity in Electron Transport through Light‐Driven.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris