The policies to meet the "zero waste"regime and transition to sustainable circular economy can no longer ignore the use of wastes in place of natural resources, and these daunting and vital societal challenges are nowadays being faced by several nations. The main objective of this work was to search waste materials suitable for a quick and environmentally friendly production of a nanoporous geomaterial able to trap toxic metals at the solid/liquid interface. More specifically, the end-of-waste from the thermal inertization of cement-asbestos and glass powder from domestic glass containers have been employed as sources for the hydrothermal synthesis of a tobermorite-rich material (TRM) successfully tested for the selective removal of Pb2+, Zn2+, Cd2+, and Ni2+ from aqueous solutions. The synthesis was carried out in alkaline solution under mild hydrothermal conditions (120 °C) within 24 h. The quantitative phase analyses of the TRM carried out by applying the Rietveld method showed the occurrence of a large amount of well-crystallized 11 Å Al-substituted tobermorites and an amorphous phase and a lower content of aragonite and calcite. Chemical analyses and thermogravimetric measurements coupled with simultaneous evolved gas mass spectrometry highlighted that Al3+ for Si4+ substitutions in the wollastonite-like tetrahedral chains of tobermorites are balanced by the occurrence of Ca2+, Na+, and K+ cations in the interlayer rather than by (OH)- for O2- substitutions in the CaO polyhedra. Time-dependent removal tests clearly indicated that metal cations are selectively adsorbed depending on their concentration in solution. Moreover, the kinetic curves showed that the removal of metals from solution is fast and the equilibrium is almost reached in the first 8 h.
Al-Substituted Tobermorites: An Effective Cation Exchanger Synthesized from "end-of-Waste" Materials / Malferrari, D.; Bernini, F.; Di Giuseppe, D.; Scognamiglio, V.; Gualtieri, A. F.. - In: ACS OMEGA. - ISSN 2470-1343. - 7:2(2021), pp. 1694-1702. [10.1021/acsomega.1c04193]
Al-Substituted Tobermorites: An Effective Cation Exchanger Synthesized from "end-of-Waste" Materials
Malferrari D.
;Bernini F.;Di Giuseppe D.;Scognamiglio V.;Gualtieri A. F.
2021
Abstract
The policies to meet the "zero waste"regime and transition to sustainable circular economy can no longer ignore the use of wastes in place of natural resources, and these daunting and vital societal challenges are nowadays being faced by several nations. The main objective of this work was to search waste materials suitable for a quick and environmentally friendly production of a nanoporous geomaterial able to trap toxic metals at the solid/liquid interface. More specifically, the end-of-waste from the thermal inertization of cement-asbestos and glass powder from domestic glass containers have been employed as sources for the hydrothermal synthesis of a tobermorite-rich material (TRM) successfully tested for the selective removal of Pb2+, Zn2+, Cd2+, and Ni2+ from aqueous solutions. The synthesis was carried out in alkaline solution under mild hydrothermal conditions (120 °C) within 24 h. The quantitative phase analyses of the TRM carried out by applying the Rietveld method showed the occurrence of a large amount of well-crystallized 11 Å Al-substituted tobermorites and an amorphous phase and a lower content of aragonite and calcite. Chemical analyses and thermogravimetric measurements coupled with simultaneous evolved gas mass spectrometry highlighted that Al3+ for Si4+ substitutions in the wollastonite-like tetrahedral chains of tobermorites are balanced by the occurrence of Ca2+, Na+, and K+ cations in the interlayer rather than by (OH)- for O2- substitutions in the CaO polyhedra. Time-dependent removal tests clearly indicated that metal cations are selectively adsorbed depending on their concentration in solution. Moreover, the kinetic curves showed that the removal of metals from solution is fast and the equilibrium is almost reached in the first 8 h.File | Dimensione | Formato | |
---|---|---|---|
acsomega.1c04193.pdf
Open access
Descrizione: full text
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris