Scattered polynomials over a finite field Fqjavax.xml.bind.JAXBElement@46419929 have been introduced by Sheekey in 2016, and a central open problem regards the classification of those that are exceptional. So far, only two families of exceptional scattered polynomials are known. Very recently, Longobardi and Zanella weakened the property of being scattered by introducing the notion of L-qt-partially scattered and R-qt-partially scattered polynomials, for t a divisor of n. Indeed, a polynomial is scattered if and only if it is both L-qt-partially scattered and R-qt-partially scattered. In this paper, by using techniques from algebraic geometry over finite fields and function fields theory, we show that the property which is the hardest to be preserved is the L-qt-partially scattered one. We investigate a large family F of R-qt-partially scattered polynomials, containing examples of exceptional R-qt-partially scattered polynomials, which turn out to be connected with linear sets of so-called pseudoregulus type. We introduce two different notions of equivalence preserving the property of being R-qt-partially scattered. Many polynomials in F are inequivalent and geometric arguments are used to determine their equivalence classes under the action of ΓL(2n/t,qt).
Investigating the exceptionality of scattered polynomials / Bartoli, D.; Zini, G.; Zullo, F.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 77:(2022), pp. 1-27. [10.1016/j.ffa.2021.101956]
Investigating the exceptionality of scattered polynomials
Zini G.;
2022
Abstract
Scattered polynomials over a finite field Fqjavax.xml.bind.JAXBElement@46419929 have been introduced by Sheekey in 2016, and a central open problem regards the classification of those that are exceptional. So far, only two families of exceptional scattered polynomials are known. Very recently, Longobardi and Zanella weakened the property of being scattered by introducing the notion of L-qt-partially scattered and R-qt-partially scattered polynomials, for t a divisor of n. Indeed, a polynomial is scattered if and only if it is both L-qt-partially scattered and R-qt-partially scattered. In this paper, by using techniques from algebraic geometry over finite fields and function fields theory, we show that the property which is the hardest to be preserved is the L-qt-partially scattered one. We investigate a large family F of R-qt-partially scattered polynomials, containing examples of exceptional R-qt-partially scattered polynomials, which turn out to be connected with linear sets of so-called pseudoregulus type. We introduce two different notions of equivalence preserving the property of being R-qt-partially scattered. Many polynomials in F are inequivalent and geometric arguments are used to determine their equivalence classes under the action of ΓL(2n/t,qt).File | Dimensione | Formato | |
---|---|---|---|
2022_BartoliZiniZullo_FFA.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
532.96 kB
Formato
Adobe PDF
|
532.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris