The Deligne–Lusztig curves associated to the algebraic groups of type A22, B22, and G22 are classical examples of maximal curves over finite fields. The Hermitian curve Hq is maximal over Fqjavax.xml.bind.JAXBElement@30720d30, for any prime power q, the Suzuki curve Sq is maximal over Fqjavax.xml.bind.JAXBElement@79adec00, for q=22h+1, h≥1, and the Ree curve Rq is maximal over Fqjavax.xml.bind.JAXBElement@5add848c, for q=32h+1, h≥0. In this paper we show that S8 is not Galois covered by H64. We also prove an unpublished result due to Rains and Zieve stating that R3 is not Galois covered by H27. Furthermore, we determine the spectrum of genera of Galois subcovers of H27, and we point out that some Galois subcovers of R3 are not Galois subcovers of H27.
Some Ree and Suzuki curves are not Galois covered by the Hermitian curve / Montanucci, M.; Zini, G.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 48:(2017), pp. 175-195. [10.1016/j.ffa.2017.07.007]
Some Ree and Suzuki curves are not Galois covered by the Hermitian curve
Zini G.
2017
Abstract
The Deligne–Lusztig curves associated to the algebraic groups of type A22, B22, and G22 are classical examples of maximal curves over finite fields. The Hermitian curve Hq is maximal over Fqjavax.xml.bind.JAXBElement@30720d30, for any prime power q, the Suzuki curve Sq is maximal over Fqjavax.xml.bind.JAXBElement@79adec00, for q=22h+1, h≥1, and the Ree curve Rq is maximal over Fqjavax.xml.bind.JAXBElement@5add848c, for q=32h+1, h≥0. In this paper we show that S8 is not Galois covered by H64. We also prove an unpublished result due to Rains and Zieve stating that R3 is not Galois covered by H27. Furthermore, we determine the spectrum of genera of Galois subcovers of H27, and we point out that some Galois subcovers of R3 are not Galois subcovers of H27.File | Dimensione | Formato | |
---|---|---|---|
2017_MontanucciZini_FFA.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
492.4 kB
Formato
Adobe PDF
|
492.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris