Complete (k, 4)-arcs in projective Galois planes are the geometric counterpart of linear non-extendible codes of length k, dimension 3 and Singleton defect 2. A class of infinite families of complete (k, 4)-arcs in PG (2 , q) is constructed, for q a power of an odd prime p≡3(mod4), p> 3. The order of magnitude of k is smaller than q. This property significantly distinguishes the complete (k, 4)-arcs of this paper from the previously known infinite families, whose size exceeds q-6q.
Complete (k,4) -arcs from quintic curves / Bartoli, D.; Speziali, P.; Zini, G.. - In: JOURNAL OF GEOMETRY. - ISSN 0047-2468. - 108:3(2017), pp. 985-1011. [10.1007/s00022-017-0390-2]
Complete (k,4) -arcs from quintic curves
Zini G.
2017
Abstract
Complete (k, 4)-arcs in projective Galois planes are the geometric counterpart of linear non-extendible codes of length k, dimension 3 and Singleton defect 2. A class of infinite families of complete (k, 4)-arcs in PG (2 , q) is constructed, for q a power of an odd prime p≡3(mod4), p> 3. The order of magnitude of k is smaller than q. This property significantly distinguishes the complete (k, 4)-arcs of this paper from the previously known infinite families, whose size exceeds q-6q.File | Dimensione | Formato | |
---|---|---|---|
2017_BartoliSpezialiZini_JGeom.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
653.17 kB
Formato
Adobe PDF
|
653.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris