We investigate monomials axd over the finite field with q elements Fq, in the case where the degree d is equal to +1 with q=(q′)n for some n. For n=6 we explicitly list all a's for which axd is a complete permutation polynomial (CPP) over Fq. Some previous characterization results by Wu et al. for n=4 are also made more explicit by providing a complete list of a's such that axd is a CPP. For odd n, we show that if q is large enough with respect to n then axd cannot be a CPP over Fq, unless q is even, n≡3(mod4), and the trace TrFjavax.xml.bind.JAXBElement@4b875630/Fjavax.xml.bind.JAXBElement@12e7e698(a−1) is equal to 0.
On monomial complete permutation polynomials / Bartoli, D.; Giulietti, M.; Zini, G.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 41:(2016), pp. 132-158. [10.1016/j.ffa.2016.06.005]
On monomial complete permutation polynomials
Zini G.
2016
Abstract
We investigate monomials axd over the finite field with q elements Fq, in the case where the degree d is equal to +1 with q=(q′)n for some n. For n=6 we explicitly list all a's for which axd is a complete permutation polynomial (CPP) over Fq. Some previous characterization results by Wu et al. for n=4 are also made more explicit by providing a complete list of a's such that axd is a CPP. For odd n, we show that if q is large enough with respect to n then axd cannot be a CPP over Fq, unless q is even, n≡3(mod4), and the trace TrFjavax.xml.bind.JAXBElement@4b875630/Fjavax.xml.bind.JAXBElement@12e7e698(a−1) is equal to 0.File | Dimensione | Formato | |
---|---|---|---|
2016_BartoliGiuliettiZini_FFA.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
485.45 kB
Formato
Adobe PDF
|
485.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris