Complete (Formula presented.) -arcs in projective planes over finite fields are the geometric counterpart of linear non-extendible Near MDS codes of length (Formula presented.) and dimension (Formula presented.). A class of infinite families of complete (Formula presented.) -arcs in (Formula presented.) is constructed, for (Formula presented.) a power of an odd prime (Formula presented.). The order of magnitude of (Formula presented.) is smaller than (Formula presented.). This property significantly distinguishes the complete (Formula presented.) -arcs of this paper from the previously known infinite families, whose size differs from (Formula presented.) by at most (Formula presented.).
Complete (k,3)-arcs from quartic curves / Bartoli, D.; Giulietti, M.; Zini, G.. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - 79:3(2016), pp. 487-505. [10.1007/s10623-015-0073-7]
Complete (k,3)-arcs from quartic curves
Zini G.
2016
Abstract
Complete (Formula presented.) -arcs in projective planes over finite fields are the geometric counterpart of linear non-extendible Near MDS codes of length (Formula presented.) and dimension (Formula presented.). A class of infinite families of complete (Formula presented.) -arcs in (Formula presented.) is constructed, for (Formula presented.) a power of an odd prime (Formula presented.). The order of magnitude of (Formula presented.) is smaller than (Formula presented.). This property significantly distinguishes the complete (Formula presented.) -arcs of this paper from the previously known infinite families, whose size differs from (Formula presented.) by at most (Formula presented.).File | Dimensione | Formato | |
---|---|---|---|
2016_BartoliGiuliettiZini_DCC.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
559.85 kB
Formato
Adobe PDF
|
559.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris