The hematopoietic U937 cells are able to differentiate into monocytes, macrophages, or osteoclasts when stimulated, respectively, with vitamin D3 (VD3), phorbol 12-myristate 13-acetate (PMA) or PMA plus VD3. We have previously demonstrated that magnesium (Mg) strongly potentiates the osteoclastic differentiation of U937 cells. In this study, we investigated whether such an effect may be ascribed to a capacity of Mg to modulate the monocyte differentiation of U937 cells and/or to an ability of Mg and VD3 to act directly and independently on the early phases of the osteoclastic differentiation. To address this issue, we subjected U937 cells to an individual and combined treatment with Mg and VD3 and then we analyzed, by flow cytometry and quantitative real-time polymerase chain reaction, the expression of a number of genes related to the early phases of the differentiation pathways under consideration. The results obtained indicated that Mg favors the monocyte differentiation of U937 cells induced by VD3 and at the same time, Mg contrasts the inhibitory effect that VD3 exerts on the osteoclastic differentiation in the absence of PMA. The crucial and articulated role played by Mg in diverse pathways of the osteoclastic differentiation of U973 cells is emphasized.

Magnesium favors the capacity of vitamin d3 to induce the monocyte differentiation of u937 cells / Parenti, S.; Sandoni, L.; Montanari, M.; Zanocco-Marani, T.; Anesi, A.; Iotti, S.; Manfredini, R.; Frassineti, C.; Davalli, P.; Grande, A.. - In: MAGNESIUM RESEARCH. - ISSN 0953-1424. - 34:3(2021), pp. 114-129. [10.1684/mrh.2021.0490]

Magnesium favors the capacity of vitamin d3 to induce the monocyte differentiation of u937 cells

Parenti S.;Sandoni L.;Montanari M.;Zanocco-Marani T.;Anesi A.;Manfredini R.;Frassineti C.;Davalli P.;Grande A.
2021

Abstract

The hematopoietic U937 cells are able to differentiate into monocytes, macrophages, or osteoclasts when stimulated, respectively, with vitamin D3 (VD3), phorbol 12-myristate 13-acetate (PMA) or PMA plus VD3. We have previously demonstrated that magnesium (Mg) strongly potentiates the osteoclastic differentiation of U937 cells. In this study, we investigated whether such an effect may be ascribed to a capacity of Mg to modulate the monocyte differentiation of U937 cells and/or to an ability of Mg and VD3 to act directly and independently on the early phases of the osteoclastic differentiation. To address this issue, we subjected U937 cells to an individual and combined treatment with Mg and VD3 and then we analyzed, by flow cytometry and quantitative real-time polymerase chain reaction, the expression of a number of genes related to the early phases of the differentiation pathways under consideration. The results obtained indicated that Mg favors the monocyte differentiation of U937 cells induced by VD3 and at the same time, Mg contrasts the inhibitory effect that VD3 exerts on the osteoclastic differentiation in the absence of PMA. The crucial and articulated role played by Mg in diverse pathways of the osteoclastic differentiation of U973 cells is emphasized.
2021
34
3
114
129
Magnesium favors the capacity of vitamin d3 to induce the monocyte differentiation of u937 cells / Parenti, S.; Sandoni, L.; Montanari, M.; Zanocco-Marani, T.; Anesi, A.; Iotti, S.; Manfredini, R.; Frassineti, C.; Davalli, P.; Grande, A.. - In: MAGNESIUM RESEARCH. - ISSN 0953-1424. - 34:3(2021), pp. 114-129. [10.1684/mrh.2021.0490]
Parenti, S.; Sandoni, L.; Montanari, M.; Zanocco-Marani, T.; Anesi, A.; Iotti, S.; Manfredini, R.; Frassineti, C.; Davalli, P.; Grande, A.
File in questo prodotto:
File Dimensione Formato  
2021 Magnesium vit D3.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 719.46 kB
Formato Adobe PDF
719.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1257809
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact