In this study the absorption of glycine, α-alanine and β-alanine amino acids into the pores of the synthetic zeolite Na-mordenite was investigated with the aim of: (i) evaluating the effectiveness of the MOR framework type in amino acid adsorption (viavapor and aqueous loading); (ii) understanding the host-guest and guest-guest interactions to possibly design a tailor made material and a loading procedure able to maximize the amino acid adsorption; (iii) studying the effect of pressure on the adsorbed amino acids such as, for instance, possible amino acid condensation. The structural characterization, carried out with the combination of diffractometric and infrared spectroscopy analyses, shows that MOR can adsorb amino acids, which are found both in protonated/deprotonated (possibly also generating zwitterions) form. Vapor loading is ineffective for α-alanine, while it is effective in β-alanine and glycine adsorption, even if using different loading degrees. The shape and size of MOR channels make this zeolite suitable to accommodate a peptide. In a glycine loaded sample some molecules condensate to form cyclic dimers, while linear oligomers are detected only in a β-alanine MOR hybrid. The sample loaded with α-l-alanine from aqueous solution does not show the presence of amide bond signals, indicating that the molecules are mostly hosted in zwitterionic form in Na-MOR channels. The application of external baric stimuli does not induce substantial modifications in the structure of the glycine loaded zeolite; this result may be explained by the low number of molecules hosted in the channels. The amino acid amount within the zeolite pores is the most important reactivity parameter and an increased loading could induce chemical modifications.

Amino acid encapsulation in zeolite MOR: Effect of spatial confinement / Polisi, M.; Fabbiani, M.; Vezzalini, G.; Di Renzo, F.; Pastero, L.; Quartieri, S.; Arletti, R.. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 23:36(2021), pp. 20541-20552. [10.1039/d1cp02676c]

Amino acid encapsulation in zeolite MOR: Effect of spatial confinement

Polisi M.;Vezzalini G.;Arletti R.
2021

Abstract

In this study the absorption of glycine, α-alanine and β-alanine amino acids into the pores of the synthetic zeolite Na-mordenite was investigated with the aim of: (i) evaluating the effectiveness of the MOR framework type in amino acid adsorption (viavapor and aqueous loading); (ii) understanding the host-guest and guest-guest interactions to possibly design a tailor made material and a loading procedure able to maximize the amino acid adsorption; (iii) studying the effect of pressure on the adsorbed amino acids such as, for instance, possible amino acid condensation. The structural characterization, carried out with the combination of diffractometric and infrared spectroscopy analyses, shows that MOR can adsorb amino acids, which are found both in protonated/deprotonated (possibly also generating zwitterions) form. Vapor loading is ineffective for α-alanine, while it is effective in β-alanine and glycine adsorption, even if using different loading degrees. The shape and size of MOR channels make this zeolite suitable to accommodate a peptide. In a glycine loaded sample some molecules condensate to form cyclic dimers, while linear oligomers are detected only in a β-alanine MOR hybrid. The sample loaded with α-l-alanine from aqueous solution does not show the presence of amide bond signals, indicating that the molecules are mostly hosted in zwitterionic form in Na-MOR channels. The application of external baric stimuli does not induce substantial modifications in the structure of the glycine loaded zeolite; this result may be explained by the low number of molecules hosted in the channels. The amino acid amount within the zeolite pores is the most important reactivity parameter and an increased loading could induce chemical modifications.
2021
23
36
20541
20552
Amino acid encapsulation in zeolite MOR: Effect of spatial confinement / Polisi, M.; Fabbiani, M.; Vezzalini, G.; Di Renzo, F.; Pastero, L.; Quartieri, S.; Arletti, R.. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 23:36(2021), pp. 20541-20552. [10.1039/d1cp02676c]
Polisi, M.; Fabbiani, M.; Vezzalini, G.; Di Renzo, F.; Pastero, L.; Quartieri, S.; Arletti, R.
File in questo prodotto:
File Dimensione Formato  
Polisi et al_2021_PCCP_Mor amminoacidi.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1257460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact