For a family of group words w we show that if G is a profinite group in which all w-values are contained in a union of finitely many subgroups with a prescribed property, then the verbal subgroup w(G) has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank. If G contains finitely many subgroups G1 , G2 , . . . , Gs of finite exponent e whose union contains all γk-values in G, it is shown that γk(G) has finite (e,k,s)-bounded exponent. If G contains finitely many subgroups G1, G2, . . . , Gs of finite rank r whose union contains all γk-values, it is shown that γk(G) has finite (k,r,s)-bounded rank.
On profinite groups in which commutators are covered by finitely many subgroups / Acciarri, C; Shumyatsky, P. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 274:1-2(2013), pp. 239-248. [10.1007/s00209-012-1067-z]
On profinite groups in which commutators are covered by finitely many subgroups
ACCIARRI C;
2013
Abstract
For a family of group words w we show that if G is a profinite group in which all w-values are contained in a union of finitely many subgroups with a prescribed property, then the verbal subgroup w(G) has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank. If G contains finitely many subgroups G1 , G2 , . . . , Gs of finite exponent e whose union contains all γk-values in G, it is shown that γk(G) has finite (e,k,s)-bounded exponent. If G contains finitely many subgroups G1, G2, . . . , Gs of finite rank r whose union contains all γk-values, it is shown that γk(G) has finite (k,r,s)-bounded rank.File | Dimensione | Formato | |
---|---|---|---|
1112.5879.pdf
Open access
Descrizione: articolo v pre
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
172.27 kB
Formato
Adobe PDF
|
172.27 kB | Adobe PDF | Visualizza/Apri |
Acciarri-Shumyatsky2013_Article_OnProfiniteGroupsInWhichCommut.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
186.37 kB
Formato
Adobe PDF
|
186.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris