Let m be a positive integer and A an elementary abelian group of order qr with r⩾2 acting on a finite q′-group G. We show that if for some integer d such that d2⩽r−1 the dth derived group of CG(a) has exponent dividing m for any a∈A#, then G(d) has {m,q,r}-bounded exponent and if γr−1(CG(a)) has exponent dividing m for any a∈A#, then γr−1(G) has {m,q,r}-bounded exponent.
Fixed points of coprime operator groups / Acciarri, C; Shumyatsky, P. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 342:01(2011), pp. 161-174. [10.1016/j.jalgebra.2011.06.013]
Fixed points of coprime operator groups
ACCIARRI C;
2011
Abstract
Let m be a positive integer and A an elementary abelian group of order qr with r⩾2 acting on a finite q′-group G. We show that if for some integer d such that d2⩽r−1 the dth derived group of CG(a) has exponent dividing m for any a∈A#, then G(d) has {m,q,r}-bounded exponent and if γr−1(CG(a)) has exponent dividing m for any a∈A#, then γr−1(G) has {m,q,r}-bounded exponent.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021869311003395-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
211.4 kB
Formato
Adobe PDF
|
211.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris