For a group G, let Γ(G) denote the graph defined on the elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G. Let Γ∗(G) be the subgraph of Γ(G) that is induced by all the vertices of Γ(G) that are not isolated. We prove that if G is a 2-generated noncyclic abelian group, then Γ∗(G) is connected. Moreover, diam(Γ∗(G)) = 2 if the torsion subgroup of G is nontrivial and diam(Γ∗(G)) = ∞ otherwise. If F is the free group of rank 2, then Γ∗(F) is connected and we deduce from diam(Γ∗(Z × Z)) = ∞ that diam(Γ∗(F)) = ∞

The generating graph of infinite abelian groups / Acciarri, C.; Lucchini, A.. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - 100:1(2019), pp. 68-75. [10.1017/S0004972718001466]

The generating graph of infinite abelian groups

Acciarri C.;
2019

Abstract

For a group G, let Γ(G) denote the graph defined on the elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G. Let Γ∗(G) be the subgraph of Γ(G) that is induced by all the vertices of Γ(G) that are not isolated. We prove that if G is a 2-generated noncyclic abelian group, then Γ∗(G) is connected. Moreover, diam(Γ∗(G)) = 2 if the torsion subgroup of G is nontrivial and diam(Γ∗(G)) = ∞ otherwise. If F is the free group of rank 2, then Γ∗(F) is connected and we deduce from diam(Γ∗(Z × Z)) = ∞ that diam(Γ∗(F)) = ∞
2019
100
1
68
75
The generating graph of infinite abelian groups / Acciarri, C.; Lucchini, A.. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - 100:1(2019), pp. 68-75. [10.1017/S0004972718001466]
Acciarri, C.; Lucchini, A.
File in questo prodotto:
File Dimensione Formato  
the-generating-graph-of-infinite-abelian-groups.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 136.4 kB
Formato Adobe PDF
136.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1255519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact