We study finite and profinite groups admitting an action by an elementary abelian group under which the centralizers of automorphisms consist of Engel elements. In particular, we prove the following theorems. Let $q$ be a prime and $A$ an elementary abelian $q$-group of order $q^2$ acting coprimely on a profinite group $G$. Assume that all elements in $C_{G}(a)$ are Engel in $G$ for each $ain A^{#}$. Then $G$ is locally nilpotent. Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^3$ acting coprimely on a finite group $G$. Assume that for each $ain A^{#}$ every element of $C_{G}(a)$ is $n$-Engel in $C_{G}(a)$. Then the group $G$ is $k$-Engel for some ${n,q}$-bounded number $k$.
On groups with automorphisms whose fixed points are Engel / Acciarri, C; Shumyatsky, P; da Silveira, D S. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 197:1(2018), pp. 307-316. [10.1007/s10231-017-0680-1]
On groups with automorphisms whose fixed points are Engel
Acciarri C;
2018
Abstract
We study finite and profinite groups admitting an action by an elementary abelian group under which the centralizers of automorphisms consist of Engel elements. In particular, we prove the following theorems. Let $q$ be a prime and $A$ an elementary abelian $q$-group of order $q^2$ acting coprimely on a profinite group $G$. Assume that all elements in $C_{G}(a)$ are Engel in $G$ for each $ain A^{#}$. Then $G$ is locally nilpotent. Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^3$ acting coprimely on a finite group $G$. Assume that for each $ain A^{#}$ every element of $C_{G}(a)$ is $n$-Engel in $C_{G}(a)$. Then the group $G$ is $k$-Engel for some ${n,q}$-bounded number $k$.File | Dimensione | Formato | |
---|---|---|---|
Acciarri2018_Article_OnGroupsWithAutomorphismsWhose.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
419.09 kB
Formato
Adobe PDF
|
419.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris