We study finite and profinite groups admitting an action by an elementary abelian group under which the centralizers of automorphisms consist of Engel elements. In particular, we prove the following theorems. Let $q$ be a prime and $A$ an elementary abelian $q$-group of order $q^2$ acting coprimely on a profinite group $G$. Assume that all elements in $C_{G}(a)$ are Engel in $G$ for each $ain A^{#}$. Then $G$ is locally nilpotent. Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^3$ acting coprimely on a finite group $G$. Assume that for each $ain A^{#}$ every element of $C_{G}(a)$ is $n$-Engel in $C_{G}(a)$. Then the group $G$ is $k$-Engel for some ${n,q}$-bounded number $k$.

On groups with automorphisms whose fixed points are Engel / Acciarri, C; Shumyatsky, P; da Silveira, D S. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 197:(2017), pp. 307-316. [10.1007/s10231-017-0680-1]

On groups with automorphisms whose fixed points are Engel

Acciarri C;
2017-01-01

Abstract

We study finite and profinite groups admitting an action by an elementary abelian group under which the centralizers of automorphisms consist of Engel elements. In particular, we prove the following theorems. Let $q$ be a prime and $A$ an elementary abelian $q$-group of order $q^2$ acting coprimely on a profinite group $G$. Assume that all elements in $C_{G}(a)$ are Engel in $G$ for each $ain A^{#}$. Then $G$ is locally nilpotent. Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^3$ acting coprimely on a finite group $G$. Assume that for each $ain A^{#}$ every element of $C_{G}(a)$ is $n$-Engel in $C_{G}(a)$. Then the group $G$ is $k$-Engel for some ${n,q}$-bounded number $k$.
197
307
316
On groups with automorphisms whose fixed points are Engel / Acciarri, C; Shumyatsky, P; da Silveira, D S. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 197:(2017), pp. 307-316. [10.1007/s10231-017-0680-1]
Acciarri, C; Shumyatsky, P; da Silveira, D S
File in questo prodotto:
File Dimensione Formato  
Acciarri2018_Article_OnGroupsWithAutomorphismsWhose.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 419.09 kB
Formato Adobe PDF
419.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1255517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact