For an element g of a group G, an Engel sink is a subset E (g) such that for every x ∈ G all sufficiently long commutators [x,g,g,...,g] belong to E(g). Let q be a prime, let m be a positive integer and A an elementary abelian group of order q^2 acting coprimely on a finite group G. We show that if for each nontrivial element a in A and every element g ∈ C_G(a) the cardinality of the smallest Engel sink E (g) is at most m, then the order of γ∞(G) is bounded in terms of m only. Moreover we prove that if for each a ∈ A {1} and every element g ∈ CG(a), the smallest Engel sink E(g) generates a subgroup of rank at most m, then the rank of γ∞(G) is bounded in terms of m and q only.
Engel sinks of fixed points in finite groups / Acciarri, C; Shumyatsky, P; Silveira, D. S.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 223:11(2019), pp. 4592-4601. [10.1016/j.jpaa.2019.02.006]
Engel sinks of fixed points in finite groups
Acciarri C;
2019
Abstract
For an element g of a group G, an Engel sink is a subset E (g) such that for every x ∈ G all sufficiently long commutators [x,g,g,...,g] belong to E(g). Let q be a prime, let m be a positive integer and A an elementary abelian group of order q^2 acting coprimely on a finite group G. We show that if for each nontrivial element a in A and every element g ∈ C_G(a) the cardinality of the smallest Engel sink E (g) is at most m, then the order of γ∞(G) is bounded in terms of m only. Moreover we prove that if for each a ∈ A {1} and every element g ∈ CG(a), the smallest Engel sink E(g) generates a subgroup of rank at most m, then the rank of γ∞(G) is bounded in terms of m and q only.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022404919300404-main.pdf
Accesso riservato
Descrizione: articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
361.64 kB
Formato
Adobe PDF
|
361.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1809.02733.pdf
Open access
Descrizione: articolo v pre
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
376.24 kB
Formato
Adobe PDF
|
376.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris