Given a group G, we write x^G for the conjugacy class of G containing the element x. A famous theorem of B. H. Neumann states that if G is a group in which all conjugacy classes are finite with bounded size, then the derived group G′ is finite. We establish the following result. Let n be a positive integer and K a subgroup of a group G such that |x^G| ≤ n for each x ∈ K. Let H=⟨K^G⟩ be the normal closure of K. Then the order of the derived group H′ is finite and n-bounded. Some corollaries of this result are also discussed.
A stronger form of Neumann's BFC-theorem / Acciarri, C; Shumyatsky, P. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 242:1(2021), pp. 269-278. [10.1007/s11856-021-2133-1]
A stronger form of Neumann's BFC-theorem
Acciarri C;
2021
Abstract
Given a group G, we write x^G for the conjugacy class of G containing the element x. A famous theorem of B. H. Neumann states that if G is a group in which all conjugacy classes are finite with bounded size, then the derived group G′ is finite. We establish the following result. Let n be a positive integer and K a subgroup of a group G such that |x^G| ≤ n for each x ∈ K. Let H=⟨K^G⟩ be the normal closure of K. Then the order of the derived group H′ is finite and n-bounded. Some corollaries of this result are also discussed.File | Dimensione | Formato | |
---|---|---|---|
Acciarri-Shumyatsky2021_Article_AStrongerFormOfNeumannSBFC-the.pdf
Accesso riservato
Descrizione: articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
185.88 kB
Formato
Adobe PDF
|
185.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2003.09933.pdf
Open access
Descrizione: articolo v pre
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
319.39 kB
Formato
Adobe PDF
|
319.39 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris