The research on flux line lattices and pancake vortices in superconducting materials, carried out within a long and fruitful collaboration with Akira Tonomura and his group at the Hitachi Advanced Research Laboratory, led us to develop a mathematical framework, based on the reciprocal representation of the magnetic vector potential, that enables us to simulate realistic phase images of fluxons. The aim of this paper is to review the main ideas underpinning our computational framework and the results we have obtained throughout the collaboration. Furthermore, we outline how to generalize the approach to model other samples and structures of interest, in particular thin ferromagnetic films, ferromagnetic nanoparticles and p-n junctions.
Phase contrast image simulations for electron holography of magnetic and electric fields / Beleggia, M; Pozzi, G. - In: MICROSCOPY. - ISSN 2050-5701. - 62:(2013), pp. S43-S54. [10.1093/jmicro/dft008]
Phase contrast image simulations for electron holography of magnetic and electric fields
Beleggia M;
2013
Abstract
The research on flux line lattices and pancake vortices in superconducting materials, carried out within a long and fruitful collaboration with Akira Tonomura and his group at the Hitachi Advanced Research Laboratory, led us to develop a mathematical framework, based on the reciprocal representation of the magnetic vector potential, that enables us to simulate realistic phase images of fluxons. The aim of this paper is to review the main ideas underpinning our computational framework and the results we have obtained throughout the collaboration. Furthermore, we outline how to generalize the approach to model other samples and structures of interest, in particular thin ferromagnetic films, ferromagnetic nanoparticles and p-n junctions.File | Dimensione | Formato | |
---|---|---|---|
jmicro_2Fdft008.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
323.77 kB
Formato
Adobe PDF
|
323.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris