Understanding the crystallization mechanism in silica-based materials is of paramount importance to comprehend geological phenomena and to design novel materials for a variety of technological and industrial applications. In this work, we show that metadynamics simulations can effectively overcome a large energy barrier to crystallize from viscous oxide glass melts and can be used to identify the melt-to-crystal transition path of the lithium disilicate system. The accelerated atomistic simulation revealed of a two-step mechanism of the nanoscale crystal formation. First, a partially layered silica embryo appeared, and then a more ordered crystalline layer with size larger than the critical nucleus size was formed. Subsequently, lithium ions piled up around the silicate layer and triggered stacking of adjacent silicate layers, which eventually built a perfect crystal. Contrarily to previous hypotheses, no lithium metasilicate crystal was observed as a precursor of the homogeneous crystallization of lithium disilicate.

Exploring the crystallization path of lithium disilicate through metadynamics simulations / Lodesani, F.; Tavanti, F.; Menziani, M. C.; Maeda, K.; Takato, Y.; Urata, S.; Pedone, A.. - In: PHYSICAL REVIEW MATERIALS. - ISSN 2475-9953. - 5:7(2021), pp. 075602-075611. [10.1103/PhysRevMaterials.5.075602]

Exploring the crystallization path of lithium disilicate through metadynamics simulations

Lodesani F.;Tavanti F.;Menziani M. C.;Pedone A.
2021

Abstract

Understanding the crystallization mechanism in silica-based materials is of paramount importance to comprehend geological phenomena and to design novel materials for a variety of technological and industrial applications. In this work, we show that metadynamics simulations can effectively overcome a large energy barrier to crystallize from viscous oxide glass melts and can be used to identify the melt-to-crystal transition path of the lithium disilicate system. The accelerated atomistic simulation revealed of a two-step mechanism of the nanoscale crystal formation. First, a partially layered silica embryo appeared, and then a more ordered crystalline layer with size larger than the critical nucleus size was formed. Subsequently, lithium ions piled up around the silicate layer and triggered stacking of adjacent silicate layers, which eventually built a perfect crystal. Contrarily to previous hypotheses, no lithium metasilicate crystal was observed as a precursor of the homogeneous crystallization of lithium disilicate.
2021
5
7
075602
075611
Exploring the crystallization path of lithium disilicate through metadynamics simulations / Lodesani, F.; Tavanti, F.; Menziani, M. C.; Maeda, K.; Takato, Y.; Urata, S.; Pedone, A.. - In: PHYSICAL REVIEW MATERIALS. - ISSN 2475-9953. - 5:7(2021), pp. 075602-075611. [10.1103/PhysRevMaterials.5.075602]
Lodesani, F.; Tavanti, F.; Menziani, M. C.; Maeda, K.; Takato, Y.; Urata, S.; Pedone, A.
File in questo prodotto:
File Dimensione Formato  
art125.pdf

Accesso riservato

Descrizione: art125
Tipologia: Versione pubblicata dall'editore
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1254963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact