Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant (nonnegative) solutions. We then address the important question of optimal treatment. More precisely, we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic effects to treat the cancer.
Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects / Conti, Monica; Gatti, Stefania; Miranville, Alain. - In: AIMS MATHEMATICS. - ISSN 2473-6988. - 7:1(2022), pp. 1536-1561. [10.3934/math.2022090]
Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects
Conti, Monica;Gatti, Stefania;Miranville, Alain
2022
Abstract
Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant (nonnegative) solutions. We then address the important question of optimal treatment. More precisely, we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic effects to treat the cancer.File | Dimensione | Formato | |
---|---|---|---|
10.3934_math.2022090.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
295.32 kB
Formato
Adobe PDF
|
295.32 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris