Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant (nonnegative) solutions. We then address the important question of optimal treatment. More precisely, we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic effects to treat the cancer.

Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects / Conti, Monica; Gatti, Stefania; Miranville, Alain. - In: AIMS MATHEMATICS. - ISSN 2473-6988. - 7:1(2022), pp. 1536-1561. [10.3934/math.2022090]

Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects

Conti, Monica;Gatti, Stefania;Miranville, Alain
2022

Abstract

Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant (nonnegative) solutions. We then address the important question of optimal treatment. More precisely, we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic effects to treat the cancer.
2022
28-ott-2021
7
1
1536
1561
Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects / Conti, Monica; Gatti, Stefania; Miranville, Alain. - In: AIMS MATHEMATICS. - ISSN 2473-6988. - 7:1(2022), pp. 1536-1561. [10.3934/math.2022090]
Conti, Monica; Gatti, Stefania; Miranville, Alain
File in questo prodotto:
File Dimensione Formato  
10.3934_math.2022090.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 295.32 kB
Formato Adobe PDF
295.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1254939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact