The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode.
Zno thin films growth optimization for piezoelectric application / Polewczyk, V.; Magrin Maffei, R.; Vinai, G.; Lo Cicero, M.; Prato, S.; Capaldo, P.; Dal Zilio, S.; Di Bona, A.; Paolicelli, G.; Mescola, A.; D'addato, S.; Torelli, P.; Benedetti, S.. - In: SENSORS. - ISSN 1424-8220. - 21:18(2021), pp. 6114-6126. [10.3390/s21186114]
Zno thin films growth optimization for piezoelectric application
Magrin Maffei R.;Di Bona A.;Paolicelli G.;D'addato S.;Torelli P.;Benedetti S.
2021
Abstract
The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode.File | Dimensione | Formato | |
---|---|---|---|
ZnOsensors.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris