Botryllus schlosseri is a cosmopolitan colonial ascidian that undergoes cyclical generation changes, or take-overs, during which adult zooids are resorbed and replaced by their buds. At take-over, adult tissues undergo diffuse apoptosis and effete cells are massively ingested by circulating phagocytes, with a consequent increase in oxygen consumption and in production of reactive oxygen species (ROS). The latter are responsible for the death of phagocytes involved in the clearance of apoptotic cells and corpses by phagocytosis-induced apoptosis. However, the majority of phagocytes and hemocytes do not die, even if they experience oxidative stress. This fact suggests the presence of detoxification mechanisms assuring their protection. To test this assumption, we searched for transcripts of genes involved in detoxification in the transcriptome of B. schlosseri. We identified and characterized transcripts for Cu/Zn superoxide dismutase (SOD), γ-glutamyl-cysteine ligase modulatory subunit (GCLM), glutathione synthase (GS), and two glutathione peroxidases (i.e., GPx3 and GPx5), all involved in protection from ROS. We also carried out a phylogenetic analysis of the putative amino acid sequences, confirming their similarity to their vertebrate counterparts, and studied the location of their mRNAs by in situ hybridization on hemocyte monolayers. We also analyzed gene transcription during the colonial blastogenetic cycle, which is the interval of time between one take-over and the next, by qRT-PCR. In addition, we investigated the effects of cadmium (Cd), an inducer of oxidative stress, on gene transcription. Our results indicated that i) antioxidant gene expression is modulated in the course of the blastogenetic cycle and upon exposure to Cd, and ii) hemocytes synthesize both enzymatic and nonenzymatic antioxidants, in line with the idea that they represent a major detoxification system for ascidians.
Protection from Oxidative Stress in Immunocytes of the Colonial Ascidian Botryllus schlosseri: Transcript Characterization and Expression Studies / Franchi, Nicola; Ballin, Francesca; Ballarin, Loriano. - In: THE BIOLOGICAL BULLETIN. - ISSN 0006-3185. - 232:1(2017), pp. 45-57. [10.1086/691694]
Protection from Oxidative Stress in Immunocytes of the Colonial Ascidian Botryllus schlosseri: Transcript Characterization and Expression Studies
FRANCHI, NICOLA;
2017
Abstract
Botryllus schlosseri is a cosmopolitan colonial ascidian that undergoes cyclical generation changes, or take-overs, during which adult zooids are resorbed and replaced by their buds. At take-over, adult tissues undergo diffuse apoptosis and effete cells are massively ingested by circulating phagocytes, with a consequent increase in oxygen consumption and in production of reactive oxygen species (ROS). The latter are responsible for the death of phagocytes involved in the clearance of apoptotic cells and corpses by phagocytosis-induced apoptosis. However, the majority of phagocytes and hemocytes do not die, even if they experience oxidative stress. This fact suggests the presence of detoxification mechanisms assuring their protection. To test this assumption, we searched for transcripts of genes involved in detoxification in the transcriptome of B. schlosseri. We identified and characterized transcripts for Cu/Zn superoxide dismutase (SOD), γ-glutamyl-cysteine ligase modulatory subunit (GCLM), glutathione synthase (GS), and two glutathione peroxidases (i.e., GPx3 and GPx5), all involved in protection from ROS. We also carried out a phylogenetic analysis of the putative amino acid sequences, confirming their similarity to their vertebrate counterparts, and studied the location of their mRNAs by in situ hybridization on hemocyte monolayers. We also analyzed gene transcription during the colonial blastogenetic cycle, which is the interval of time between one take-over and the next, by qRT-PCR. In addition, we investigated the effects of cadmium (Cd), an inducer of oxidative stress, on gene transcription. Our results indicated that i) antioxidant gene expression is modulated in the course of the blastogenetic cycle and upon exposure to Cd, and ii) hemocytes synthesize both enzymatic and nonenzymatic antioxidants, in line with the idea that they represent a major detoxification system for ascidians.File | Dimensione | Formato | |
---|---|---|---|
2017 Biol Bull (Botryllus antioxidant genes).pdf
Accesso riservato
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris