As an evolutionary ancient component of the metazoan immune defense toolkit, the complement system can modulate cells and humoral responses of both innate and (in jawed vertebrates) adaptive immunity. All the three known complement-activation pathways converge on the cleavage of C3 to C3a and C3b. The anaphylatoxin C3a behaves like a chemokine in inflammatory responses, whereas C3b exerts an opsonic role and, ultimately, can activate the lytic pathway. C3aR, one of the mammalian receptor for C3a, is a member of the G-protein-coupled receptor family sharing seven transmembrane alpha helixes. C3aR can act as a chemokine and recruit neutrophils, triggering degranulation and respiratory burst, which initiates an inflammatory reaction. Mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript showing homology with mammalian c3ar. The gene (bsc3/c5ar) is actively transcribed in morula cells, the circulating immunocyte triggering the inflammatory reactions in response to the recognition of nonself. Its transcription is modulated during the recurrent cycles of asexual reproduction known as blastogenetic cycles. Moreover, the treatment of hemocytes with C3aR agonist, induces a significant increase in the transcription of BsC3, revealing the presence of an autocrine feedback system able to modulate the expression of C3 in order to obtain a rapid clearance of potentially dangerous nonself cells or particles. The obtained results support the previously proposed role of complement as one of the main humoral components of immune response in tunicates and stress the importance of morula cells in botryllid ascidians innate immunity.
Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri / Peronato, Anna; Franchi, Nicola; Ballarin, Loriano. - In: BIOLOGY. - ISSN 2079-7737. - 9:9(2020), pp. 263-N/A. [10.3390/biology9090263]
Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri
Franchi, Nicola;
2020
Abstract
As an evolutionary ancient component of the metazoan immune defense toolkit, the complement system can modulate cells and humoral responses of both innate and (in jawed vertebrates) adaptive immunity. All the three known complement-activation pathways converge on the cleavage of C3 to C3a and C3b. The anaphylatoxin C3a behaves like a chemokine in inflammatory responses, whereas C3b exerts an opsonic role and, ultimately, can activate the lytic pathway. C3aR, one of the mammalian receptor for C3a, is a member of the G-protein-coupled receptor family sharing seven transmembrane alpha helixes. C3aR can act as a chemokine and recruit neutrophils, triggering degranulation and respiratory burst, which initiates an inflammatory reaction. Mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript showing homology with mammalian c3ar. The gene (bsc3/c5ar) is actively transcribed in morula cells, the circulating immunocyte triggering the inflammatory reactions in response to the recognition of nonself. Its transcription is modulated during the recurrent cycles of asexual reproduction known as blastogenetic cycles. Moreover, the treatment of hemocytes with C3aR agonist, induces a significant increase in the transcription of BsC3, revealing the presence of an autocrine feedback system able to modulate the expression of C3 in order to obtain a rapid clearance of potentially dangerous nonself cells or particles. The obtained results support the previously proposed role of complement as one of the main humoral components of immune response in tunicates and stress the importance of morula cells in botryllid ascidians innate immunity.File | Dimensione | Formato | |
---|---|---|---|
2020 Biology (C3aR).pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris