Motorized molecules where an external stimulus leads to controlled motion can perform work on the atomic scale. In Feringa-type motors, controlled motion is initiated by ultraviolet light that triggers a sequence of isomerization and helical inversion steps leading to the unidirectional rotation of the motor. Studying motor molecules on solid surfaces is advantageous because molecules can be studied in real space with scanning probe microscopy, surface features act as a spatial reference, and motion can be activated by pulses from the scanning probe tip. However, commonly used metal substrates have drawbacks, notably the quenching of excited molecular states by surface conduction electrons. An alternate approach is to deposit molecular motors on semiconducting substrates, thereby removing a potential path for quenching. Here we present results on the adsorption configurations and demonstrate the motion of unidirectional Feringa molecular motors adsorbed on the wide band gap semiconductor rutile TiO2(110).
Adsorption and Motion of Single Molecular Motors on TiO2(110) / Jacobson, P.; Prezzi, D.; Liu, D.; Schied, M.; Tour, J. M.; Corni, S.; Calzolari, A.; Molinari, E.; Grill, L.. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 124:45(2020), pp. 24776-24785. [10.1021/acs.jpcc.0c07065]
Adsorption and Motion of Single Molecular Motors on TiO2(110)
Prezzi D.;Corni S.;Calzolari A.;Molinari E.;
2020
Abstract
Motorized molecules where an external stimulus leads to controlled motion can perform work on the atomic scale. In Feringa-type motors, controlled motion is initiated by ultraviolet light that triggers a sequence of isomerization and helical inversion steps leading to the unidirectional rotation of the motor. Studying motor molecules on solid surfaces is advantageous because molecules can be studied in real space with scanning probe microscopy, surface features act as a spatial reference, and motion can be activated by pulses from the scanning probe tip. However, commonly used metal substrates have drawbacks, notably the quenching of excited molecular states by surface conduction electrons. An alternate approach is to deposit molecular motors on semiconducting substrates, thereby removing a potential path for quenching. Here we present results on the adsorption configurations and demonstrate the motion of unidirectional Feringa molecular motors adsorbed on the wide band gap semiconductor rutile TiO2(110).File | Dimensione | Formato | |
---|---|---|---|
JPCC Resubmission Final Check.pdf
Accesso riservato
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris