The problem of computing quantum mechanical propagators can be recast as a computation of a Wilson line operator for parallel transport by a flat connection acting on a vector bundle of wave functions. In this picture, the base manifold is an odd-dimensional symplectic geometry, or quite generically a contact manifold that can be viewed as a "phase-spacetime,"while the fibers are Hilbert spaces. This approach enjoys a "quantum Darboux theorem"that parallels the Darboux theorem on contact manifolds which turns local classical dynamics into straight lines. We detail how the quantum Darboux theorem works for anharmonic quantum potentials. In particular, we develop a novel diagrammatic approach for computing the asymptotics of a gauge transformation that locally makes complicated quantum dynamics trivial.
Quantum Darboux theorem / Corradini, O.; Latini, E.; Waldron, A.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 103:10(2021), pp. 1-19. [10.1103/PhysRevD.103.105021]
Quantum Darboux theorem
Corradini O.;
2021
Abstract
The problem of computing quantum mechanical propagators can be recast as a computation of a Wilson line operator for parallel transport by a flat connection acting on a vector bundle of wave functions. In this picture, the base manifold is an odd-dimensional symplectic geometry, or quite generically a contact manifold that can be viewed as a "phase-spacetime,"while the fibers are Hilbert spaces. This approach enjoys a "quantum Darboux theorem"that parallels the Darboux theorem on contact manifolds which turns local classical dynamics into straight lines. We detail how the quantum Darboux theorem works for anharmonic quantum potentials. In particular, we develop a novel diagrammatic approach for computing the asymptotics of a gauge transformation that locally makes complicated quantum dynamics trivial.File | Dimensione | Formato | |
---|---|---|---|
PRD103.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris