The study was aimed at testing various models that can explain visual lateral asymmetries due to hemispheric specialization. In Experiments 1-3 the subjects had to perform a lateralized "go-no go" discrimination of words (primary task) either alone or in association with secondary tasks that interfered with the processing of the left hemisphere (ordered tapping) or the right hemisphere (finger flexion). In Experiment 4 the primary task was one of lateralized "go-no go" discrimination of faces while the secondary tasks were again those of ordered tapping and finger flexion. The results showed that in the case of word discrimination the advantage in speed of response in favour of the right visual field/left hemisphere (RVF/LH), which was observed for the primary task alone, did not change when the secondary task was added. This held true irrespective of whether the secondary task loaded the left or right hemisphere. The advantage for the left visual field/right hemisphere (LVF/RH) observed for face discrimination alone, disappeared when the secondary task interfered with the processing of the right hemisphere and did not change when the secondary task concerned the left hemisphere. It was concluded that each hemisphere is able to elaborate in parallel the incoming information, but, in normal conditions, interhemispheric transmission is responsible for the lateral asymmetries in perception (conditional interhemispheric transmission model). © 1985.
Evidence of interhemispheric transmission in laterality effects / Umilta, C.; Rizzolatti, G.; Anzola, G. P.; Luppino, G.; Porro, C.. - In: NEUROPSYCHOLOGIA. - ISSN 0028-3932. - 23:2(1985), pp. 203-213. [10.1016/0028-3932(85)90104-6]
Evidence of interhemispheric transmission in laterality effects
Porro C.
1985
Abstract
The study was aimed at testing various models that can explain visual lateral asymmetries due to hemispheric specialization. In Experiments 1-3 the subjects had to perform a lateralized "go-no go" discrimination of words (primary task) either alone or in association with secondary tasks that interfered with the processing of the left hemisphere (ordered tapping) or the right hemisphere (finger flexion). In Experiment 4 the primary task was one of lateralized "go-no go" discrimination of faces while the secondary tasks were again those of ordered tapping and finger flexion. The results showed that in the case of word discrimination the advantage in speed of response in favour of the right visual field/left hemisphere (RVF/LH), which was observed for the primary task alone, did not change when the secondary task was added. This held true irrespective of whether the secondary task loaded the left or right hemisphere. The advantage for the left visual field/right hemisphere (LVF/RH) observed for face discrimination alone, disappeared when the secondary task interfered with the processing of the right hemisphere and did not change when the secondary task concerned the left hemisphere. It was concluded that each hemisphere is able to elaborate in parallel the incoming information, but, in normal conditions, interhemispheric transmission is responsible for the lateral asymmetries in perception (conditional interhemispheric transmission model). © 1985.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris