Drone delivery is drawing increasing attention in last-mile delivery. Effective solution methods to solve decision-making problems arising in drone delivery allow to run and assess drone delivery systems. In this paper, we focus on delivery systems with a single traditional vehicle and multiple drones working in tandem to fulfill customer requests. We address the Traveling Salesman Problem with Multiple Drones (TSP-MD) and investigate the modeling challenges posed by the presence of multiple drones, which have proven to be hard to handle in the literature. We propose a compact Mixed-Integer Linear Programming (MILP) model to formulate the TSP-MD and several families of valid inequalities. Moreover, we illustrate an exact decomposition approach based on the compact MILP and a branch-and-cut algorithm. We show that this exact approach can solve instances with up to 24 customers to proven optimality, improving upon existing exact methods that can solve similar problems with up to ten customers only.
Exact methods for the traveling salesman problem with multiple drones / Cavani, S.; Iori, M.; Roberti, R.. - In: TRANSPORTATION RESEARCH. PART C, EMERGING TECHNOLOGIES. - ISSN 0968-090X. - 130:(2021), pp. 103280-103280. [10.1016/j.trc.2021.103280]
Exact methods for the traveling salesman problem with multiple drones
Cavani S.;Iori M.;
2021
Abstract
Drone delivery is drawing increasing attention in last-mile delivery. Effective solution methods to solve decision-making problems arising in drone delivery allow to run and assess drone delivery systems. In this paper, we focus on delivery systems with a single traditional vehicle and multiple drones working in tandem to fulfill customer requests. We address the Traveling Salesman Problem with Multiple Drones (TSP-MD) and investigate the modeling challenges posed by the presence of multiple drones, which have proven to be hard to handle in the literature. We propose a compact Mixed-Integer Linear Programming (MILP) model to formulate the TSP-MD and several families of valid inequalities. Moreover, we illustrate an exact decomposition approach based on the compact MILP and a branch-and-cut algorithm. We show that this exact approach can solve instances with up to 24 customers to proven optimality, improving upon existing exact methods that can solve similar problems with up to ten customers only.File | Dimensione | Formato | |
---|---|---|---|
CavaniIoriRoberti2021-Preprint.pdf
Open access
Descrizione: Bozza preprint
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
350.91 kB
Formato
Adobe PDF
|
350.91 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris