Phytoplankton occupies a key trophic level in aquatic ecosystems. Chemical impacts on these primary producers can disrupt the integrity of an entire ecosystem. Two freshwater (Pseudokirchneriella subcapitata-Ps and Scenedesmus obliquus-S) and three marine (Phaeodactylum tricornutum-P, Isochrysis galbana-I, Tetraselmis suecica-T) microalgae species were exposed to dilutions of four chemicals: nanoparticles (n-TiO2, n-ZnO), amoxicillin (antibiotic), and white musk (personal care fragrance) to determine the half maximal effective concentration (EC50) after 72 h of exposure under standardized and controlled environmental conditions. Cell cultures were exposed to EC50 to determine sublethal effects (72 h) based on biochemical (chlorophylls a, b, c), molecular (changes in outer cell wall structure), and morphological alterations. We report for the first time EC50 values for nanoparticles in not standardized species (S, I and T) and for amoxicillin and white musk in all tested species. Standardized species (Ps and P) were less sensitive than non-standardized in some cases. Fourier-transformed infrared spectroscopy showed a marked spectral alteration (from 10.44% to 90.93%) of treated cultures compared to negative controls; however, principal component analysis disclosed no differences in molecular alteration between the five microalgae species or the two aquatic habitats considered. There was a significant decrease in chlorophylls content in all species exposed to EC50 compared to controls (Kruskal Wallis test; p < 0.05). There was a significant increase in cell-size (Mann–Whitney U test; p < 0.05) in I, P and T exposed to white musk and S exposed to amoxicillin. Findings highlight ecotoxicological risks from new generation pollutants for primary producers in aquatic ecosystems.

Ecotoxicological effects of new generation pollutants (nanoparticles, amoxicillin and white musk) on freshwater and marine phytoplankton species / Broccoli, A.; Anselmi, S.; Cavallo, A.; Ferrari, V.; Prevedelli, D.; Pastorino, P.; Renzi, M.. - In: CHEMOSPHERE. - ISSN 0045-6535. - 279:(2021), pp. 130623-130635. [10.1016/j.chemosphere.2021.130623]

Ecotoxicological effects of new generation pollutants (nanoparticles, amoxicillin and white musk) on freshwater and marine phytoplankton species

Prevedelli D.;
2021

Abstract

Phytoplankton occupies a key trophic level in aquatic ecosystems. Chemical impacts on these primary producers can disrupt the integrity of an entire ecosystem. Two freshwater (Pseudokirchneriella subcapitata-Ps and Scenedesmus obliquus-S) and three marine (Phaeodactylum tricornutum-P, Isochrysis galbana-I, Tetraselmis suecica-T) microalgae species were exposed to dilutions of four chemicals: nanoparticles (n-TiO2, n-ZnO), amoxicillin (antibiotic), and white musk (personal care fragrance) to determine the half maximal effective concentration (EC50) after 72 h of exposure under standardized and controlled environmental conditions. Cell cultures were exposed to EC50 to determine sublethal effects (72 h) based on biochemical (chlorophylls a, b, c), molecular (changes in outer cell wall structure), and morphological alterations. We report for the first time EC50 values for nanoparticles in not standardized species (S, I and T) and for amoxicillin and white musk in all tested species. Standardized species (Ps and P) were less sensitive than non-standardized in some cases. Fourier-transformed infrared spectroscopy showed a marked spectral alteration (from 10.44% to 90.93%) of treated cultures compared to negative controls; however, principal component analysis disclosed no differences in molecular alteration between the five microalgae species or the two aquatic habitats considered. There was a significant decrease in chlorophylls content in all species exposed to EC50 compared to controls (Kruskal Wallis test; p < 0.05). There was a significant increase in cell-size (Mann–Whitney U test; p < 0.05) in I, P and T exposed to white musk and S exposed to amoxicillin. Findings highlight ecotoxicological risks from new generation pollutants for primary producers in aquatic ecosystems.
2021
279
130623
130635
Ecotoxicological effects of new generation pollutants (nanoparticles, amoxicillin and white musk) on freshwater and marine phytoplankton species / Broccoli, A.; Anselmi, S.; Cavallo, A.; Ferrari, V.; Prevedelli, D.; Pastorino, P.; Renzi, M.. - In: CHEMOSPHERE. - ISSN 0045-6535. - 279:(2021), pp. 130623-130635. [10.1016/j.chemosphere.2021.130623]
Broccoli, A.; Anselmi, S.; Cavallo, A.; Ferrari, V.; Prevedelli, D.; Pastorino, P.; Renzi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1251157
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact