The neurotransmitter serotonin (5-HT) plays morphogenetic roles during development, and their alteration could contribute to autism pathogenesis in humans. To further characterize 5-HT contributions to neocortical development, we assessed the thickness and neuronal cell density of various cerebral cortical areas in 5-HT transporter (5-HTT) knockout (ko) mice, characterized by elevated extracellular 5-HT levels. The thickness of layer IV is decreased in 5-HTT knockout mice compared to wildtype mice. The overall effect on cortical thickness, however, depends on the genetic background of the mice. Overall cortical thickness is decreased in many cortical areas of 5-HTT ko mice with a mixed c129-CD1-C57BL/6J background. Instead, 5-HTT ko mice backcrossed into the C57BL/6J background display increases in supragranular and infragranular layers, which compensate entirely for decreased layer IV thickness, resulting in unchanged, or even enhanced cortical thickness. Moreover, significant increases in neuronal cell density are found in 5-HTT ko mice with a C57BL/6J background (wt:hz:ko ratio = 1.00:1.04:1.17), but not in mixed c129-CD1-C57BL/6J 5-HTT ko animals. These results provide evidence of 5-HTT gene effects on neocortical morphology in epistatic interaction with genetic variants at other loci, and may model the effect of functional 5-HTT gene variants on neocortical development in autism.

Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: A quantitation study / Altamura, C.; Dell'Acqua, M. L.; Moessner, R.; Murphy, D. L.; Lesch, K. P.; Persico, Antonio M.. - In: CEREBRAL CORTEX. - ISSN 1047-3211. - 17:6(2007), pp. 1394-1401. [10.1093/cercor/bhl051]

Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: A quantitation study

Persico, Antonio M.
2007

Abstract

The neurotransmitter serotonin (5-HT) plays morphogenetic roles during development, and their alteration could contribute to autism pathogenesis in humans. To further characterize 5-HT contributions to neocortical development, we assessed the thickness and neuronal cell density of various cerebral cortical areas in 5-HT transporter (5-HTT) knockout (ko) mice, characterized by elevated extracellular 5-HT levels. The thickness of layer IV is decreased in 5-HTT knockout mice compared to wildtype mice. The overall effect on cortical thickness, however, depends on the genetic background of the mice. Overall cortical thickness is decreased in many cortical areas of 5-HTT ko mice with a mixed c129-CD1-C57BL/6J background. Instead, 5-HTT ko mice backcrossed into the C57BL/6J background display increases in supragranular and infragranular layers, which compensate entirely for decreased layer IV thickness, resulting in unchanged, or even enhanced cortical thickness. Moreover, significant increases in neuronal cell density are found in 5-HTT ko mice with a C57BL/6J background (wt:hz:ko ratio = 1.00:1.04:1.17), but not in mixed c129-CD1-C57BL/6J 5-HTT ko animals. These results provide evidence of 5-HTT gene effects on neocortical morphology in epistatic interaction with genetic variants at other loci, and may model the effect of functional 5-HTT gene variants on neocortical development in autism.
2007
17
6
1394
1401
Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: A quantitation study / Altamura, C.; Dell'Acqua, M. L.; Moessner, R.; Murphy, D. L.; Lesch, K. P.; Persico, Antonio M.. - In: CEREBRAL CORTEX. - ISSN 1047-3211. - 17:6(2007), pp. 1394-1401. [10.1093/cercor/bhl051]
Altamura, C.; Dell'Acqua, M. L.; Moessner, R.; Murphy, D. L.; Lesch, K. P.; Persico, Antonio M.
File in questo prodotto:
File Dimensione Formato  
Persico_Cer_Cortex_2007.pdf

Accesso riservato

Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1251065
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 61
social impact