Converging evidence supports a role of serotonin (5-hydroxytryptamine; 5-HT) in barrel cortex development. Systemic administration of 5-HT-depleting drugs reduces cross-sectional whisker barrel areas in the somatosensory cortex (SSC) of neonatal rats. Here we assess the relative impact on barrel pattern formation of (i) 5-HT depletion and (ii) decreased brain growth, which is often associated with pharmacological 5-HT depletion, by comparing the effects of 5-HT-depleting drugs with those of reduced protein intake. Left hemisphere 5-HT levels in the SSC and right hemisphere whisker barrel areas were assessed at postnatal day 6 (P6) in the same animal following injection of p-chloroamphetamine (PCA) or p-chlorophenylalanine (PCPA) at P0. Both drugs significantly reduced cortical 5-HT content and mean barrel areas at P6, but also body and brain growth. Differences in brain weight accounted for 84.4% of the variance in barrel size, with negligible contributions by cortical 5-HT content. PCPA-treated animals sacrificed at P14 yielded similar trends, albeit less pronounced. Finally, reduced protein intake resulted in lower body weight and cortical 5-HT levels at P6, but yielded no change in brain weight or mean barrel area. Barrel formation therefore appears markedly less sensitive to 5-HT depletion per se than to drug-induced growth impairment.
Serotonin depletion and barrel cortex development: impact of growth impairment vs. serotonin effects on thalamocortical endings / Persico, A M; Altamura, C; Calia, E; Puglisi-Allegra, S; Ventura, R; Lucchese, F; Keller, F. - In: CEREBRAL CORTEX. - ISSN 1047-3211. - 10:2(2000), pp. 181-191. [10.1093/cercor/10.2.181]
Serotonin depletion and barrel cortex development: impact of growth impairment vs. serotonin effects on thalamocortical endings
Persico, A M;
2000
Abstract
Converging evidence supports a role of serotonin (5-hydroxytryptamine; 5-HT) in barrel cortex development. Systemic administration of 5-HT-depleting drugs reduces cross-sectional whisker barrel areas in the somatosensory cortex (SSC) of neonatal rats. Here we assess the relative impact on barrel pattern formation of (i) 5-HT depletion and (ii) decreased brain growth, which is often associated with pharmacological 5-HT depletion, by comparing the effects of 5-HT-depleting drugs with those of reduced protein intake. Left hemisphere 5-HT levels in the SSC and right hemisphere whisker barrel areas were assessed at postnatal day 6 (P6) in the same animal following injection of p-chloroamphetamine (PCA) or p-chlorophenylalanine (PCPA) at P0. Both drugs significantly reduced cortical 5-HT content and mean barrel areas at P6, but also body and brain growth. Differences in brain weight accounted for 84.4% of the variance in barrel size, with negligible contributions by cortical 5-HT content. PCPA-treated animals sacrificed at P14 yielded similar trends, albeit less pronounced. Finally, reduced protein intake resulted in lower body weight and cortical 5-HT levels at P6, but yielded no change in brain weight or mean barrel area. Barrel formation therefore appears markedly less sensitive to 5-HT depletion per se than to drug-induced growth impairment.File | Dimensione | Formato | |
---|---|---|---|
100181.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
335.32 kB
Formato
Adobe PDF
|
335.32 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris