Stress granules (SGs) are dynamic ribonucleoprotein granules induced by environmental stresses. They play an important role in the stress response by integrating mRNA stability, translation, and signaling pathways. Recent work has connected SG dysfunction to neurodegenerative diseases. In these diseases, SG dynamics are impaired because of mutations in SG proteins or protein quality control factors. Impaired SG dynamics and delayed SG dissolution have also been observed for SGs that accumulate misfolding-prone defective ribosomal products (DRiPs). DRiP accumulation inside SGs is controlled by a surveillance system referred to as granulostasis and encompasses the molecular chaperones VCP and the HSPB8-BAG3-HSP70 complex. BAG3 is a member of the BAG family of proteins, which includes five additional members. One of these proteins, BAG6, is functionally related to BAG3 and able to assist degradation of DRiPs. However, whether BAG6 is involved in granulostasis is unknown. We report that BAG6 is not recruited into SGs induced by different types of stress, nor does it affect SG dynamics. BAG6 also does not replace BAG3’s function in SG granulostasis. We show that BAG3 and BAG6 target different subsets of DRiPs, and BAG3 binding to DRiPs is mediated by HSPB8 and HSP70. Our data support the idea that SGs are sensitive to BAG3-HSP70-bound DRiPs but not to BAG6-bound DRiPs. Additionally, only BAG3 is strongly upregulated in the stress recovery phase, when SGs dissolve. These data exclude a role for BAG6 in granulostasis and point to a more specialized function in the clearance of a specific subset of DRiPs.

BAG3 and BAG6 differentially affect the dynamics of stress granules by targeting distinct subsets of defective polypeptides released from ribosomes / Mediani, L.; Galli, V.; Carra, A. D.; Bigi, I.; Vinet, J.; Ganassi, M.; Antoniani, F.; Tiago, T.; Cimino, M.; Mateju, D.; Cereda, C.; Pansarasa, O.; Alberti, S.; Mandrioli, J.; Carra, S.. - In: CELL STRESS & CHAPERONES. - ISSN 1355-8145. - 25:6(2020), pp. 1045-1058. [10.1007/s12192-020-01141-w]

BAG3 and BAG6 differentially affect the dynamics of stress granules by targeting distinct subsets of defective polypeptides released from ribosomes

Mediani L.;Bigi I.;Vinet J.;Ganassi M.;Cimino M.;Mandrioli J.;Carra S.
2020

Abstract

Stress granules (SGs) are dynamic ribonucleoprotein granules induced by environmental stresses. They play an important role in the stress response by integrating mRNA stability, translation, and signaling pathways. Recent work has connected SG dysfunction to neurodegenerative diseases. In these diseases, SG dynamics are impaired because of mutations in SG proteins or protein quality control factors. Impaired SG dynamics and delayed SG dissolution have also been observed for SGs that accumulate misfolding-prone defective ribosomal products (DRiPs). DRiP accumulation inside SGs is controlled by a surveillance system referred to as granulostasis and encompasses the molecular chaperones VCP and the HSPB8-BAG3-HSP70 complex. BAG3 is a member of the BAG family of proteins, which includes five additional members. One of these proteins, BAG6, is functionally related to BAG3 and able to assist degradation of DRiPs. However, whether BAG6 is involved in granulostasis is unknown. We report that BAG6 is not recruited into SGs induced by different types of stress, nor does it affect SG dynamics. BAG6 also does not replace BAG3’s function in SG granulostasis. We show that BAG3 and BAG6 target different subsets of DRiPs, and BAG3 binding to DRiPs is mediated by HSPB8 and HSP70. Our data support the idea that SGs are sensitive to BAG3-HSP70-bound DRiPs but not to BAG6-bound DRiPs. Additionally, only BAG3 is strongly upregulated in the stress recovery phase, when SGs dissolve. These data exclude a role for BAG6 in granulostasis and point to a more specialized function in the clearance of a specific subset of DRiPs.
2020
25
6
1045
1058
BAG3 and BAG6 differentially affect the dynamics of stress granules by targeting distinct subsets of defective polypeptides released from ribosomes / Mediani, L.; Galli, V.; Carra, A. D.; Bigi, I.; Vinet, J.; Ganassi, M.; Antoniani, F.; Tiago, T.; Cimino, M.; Mateju, D.; Cereda, C.; Pansarasa, O.; Alberti, S.; Mandrioli, J.; Carra, S.. - In: CELL STRESS & CHAPERONES. - ISSN 1355-8145. - 25:6(2020), pp. 1045-1058. [10.1007/s12192-020-01141-w]
Mediani, L.; Galli, V.; Carra, A. D.; Bigi, I.; Vinet, J.; Ganassi, M.; Antoniani, F.; Tiago, T.; Cimino, M.; Mateju, D.; Cereda, C.; Pansarasa, O.; A...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1250602
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact