During the last decade, the rapid progress in the development of next-generation sequencing (NGS) technologies has provided relevant insights into complex biological systems, ranging from cancer genomics to microbiology. Among NGS technologies, single-cell RNA sequencing is currently used to decipher the complex heterogeneity of several biological samples, including T cells. Even if this technique requires specialized equipment and expertise, nowadays it is broadly applied in research. In this chapter, we will provide an optimized protocol for the isolation of T cells and the preparation of RNA sequencing libraries by using droplet digital technology (ddSEQ, Bio-Rad Laboratories). We will also illustrate a guide to the main steps of data processing and options for data interpretation. This protocol will support users in building a single-cell experimental framework, from sample preparation to data interpretation.
Gene expression analysis of T-cells by single-cell RNA-seq / Lo Tartaro, D.; De Biasi, S.; Forcato, M.; Gibellini, L.; Cossarizza, A.. - 2285:(2021), pp. 277-296. [10.1007/978-1-0716-1311-5_22]
Gene expression analysis of T-cells by single-cell RNA-seq
De Biasi S.;Forcato M.;Gibellini L.;Cossarizza A.
2021
Abstract
During the last decade, the rapid progress in the development of next-generation sequencing (NGS) technologies has provided relevant insights into complex biological systems, ranging from cancer genomics to microbiology. Among NGS technologies, single-cell RNA sequencing is currently used to decipher the complex heterogeneity of several biological samples, including T cells. Even if this technique requires specialized equipment and expertise, nowadays it is broadly applied in research. In this chapter, we will provide an optimized protocol for the isolation of T cells and the preparation of RNA sequencing libraries by using droplet digital technology (ddSEQ, Bio-Rad Laboratories). We will also illustrate a guide to the main steps of data processing and options for data interpretation. This protocol will support users in building a single-cell experimental framework, from sample preparation to data interpretation.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris