Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 °C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.
New Insights in the Production of Simulated Moon Agglutinates: The Use of Natural Zeolite-Bearing Rocks / Manzoli, M.; Tammaro, O.; Marocco, A.; Bonelli, B.; Barrera, G.; Tiberto, P.; Allia, P.; Mateo-Velez, J. -C.; Roggero, A.; Dantras, E.; Arletti, R.; Pansini, M.; Esposito, S.. - In: ACS EARTH AND SPACE CHEMISTRY. - ISSN 2472-3452. - 5:6(2021), pp. 1631-1646. [10.1021/acsearthspacechem.1c00118]
New Insights in the Production of Simulated Moon Agglutinates: The Use of Natural Zeolite-Bearing Rocks
Arletti R.;
2021
Abstract
Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 °C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris