Condition monitoring of electric machines is gaining interest in industry, because of increasing demand of fault tolerance machines. State-of-the-art diagnostic procedure are based on non-invasive signal processing of electrical signal that allow to detect fault signature at an incipient stage. Here, the use of Hilbert and Wavelet transform is investigated. Specifically, a theoretical analysis is presented that can be used to select the optimal wavelet, i.e. the decomposition level that corresponds to the maximum fault signature energy. Simulation results confirm the effectiveness of the proposed procedure, even under time-varying conditions.

Rotor fault detection of induction machines with optimal wavelet transform / Sintoni, M.; Bellini, A.; Forlivesi, D.; Bianchini, C.. - (2021), pp. 283-288. (Intervento presentato al convegno 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021 tenutosi a ita nel 2021) [10.1109/WEMDCD51469.2021.9425651].

Rotor fault detection of induction machines with optimal wavelet transform

Bellini A.;Bianchini C.
2021

Abstract

Condition monitoring of electric machines is gaining interest in industry, because of increasing demand of fault tolerance machines. State-of-the-art diagnostic procedure are based on non-invasive signal processing of electrical signal that allow to detect fault signature at an incipient stage. Here, the use of Hilbert and Wavelet transform is investigated. Specifically, a theoretical analysis is presented that can be used to select the optimal wavelet, i.e. the decomposition level that corresponds to the maximum fault signature energy. Simulation results confirm the effectiveness of the proposed procedure, even under time-varying conditions.
2021
2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021
ita
2021
283
288
Sintoni, M.; Bellini, A.; Forlivesi, D.; Bianchini, C.
Rotor fault detection of induction machines with optimal wavelet transform / Sintoni, M.; Bellini, A.; Forlivesi, D.; Bianchini, C.. - (2021), pp. 283-288. (Intervento presentato al convegno 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021 tenutosi a ita nel 2021) [10.1109/WEMDCD51469.2021.9425651].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1249086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact