A method for modeling inductors at high-frequency operation is presented. The method is based on analytical approaches which can predict turn inductances, turn-to-turn and turn-to-core capacitances using physical structure of windings. Turn inductances, turn-to-turn and turn-to-core capacitances of coils are then introduced into suitable lumped parameter equivalent circuits of inductors. The overall inductance and stray capacitance can be obtained through the use of the equivalent circuits. Both single- and multiple-layer inductors are considered. The method was tested with experimental measurements. The accuracy of the results was good in most cases. The derived expressions can be useful for the design of HF inductors and can also be used for simulation purposes.
Lumped parameter models for single- and multiple-layer inductors / Massarini, A.; Kazimierczuk, M. K.; Grandi, G.. - 1:(1996), pp. 295-301. (Intervento presentato al convegno Proceedings of the 1996 27th Annual IEEE Power Electronics Specialists Conference, PESC. Part 1 (of 2) tenutosi a Maggiore, Italy, nel 1996).
Lumped parameter models for single- and multiple-layer inductors
Massarini A.;
1996
Abstract
A method for modeling inductors at high-frequency operation is presented. The method is based on analytical approaches which can predict turn inductances, turn-to-turn and turn-to-core capacitances using physical structure of windings. Turn inductances, turn-to-turn and turn-to-core capacitances of coils are then introduced into suitable lumped parameter equivalent circuits of inductors. The overall inductance and stray capacitance can be obtained through the use of the equivalent circuits. Both single- and multiple-layer inductors are considered. The method was tested with experimental measurements. The accuracy of the results was good in most cases. The derived expressions can be useful for the design of HF inductors and can also be used for simulation purposes.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris