In this paper a numerical approach is developed to forecast the dynamic behavior of a power transmission belt running on eccentric pulleys. Basic partial differential equations are developed, considering the elastic effect of the lower branch of the belt. Nonlinear resonances and dynamic instabilities are analyzed in detail using a high dimensional discrete model, obtained through the Galerkin procedure. The numerical analysis is performed by means of direct simulations and a continuation software. Numerical results are compared with available experimental data. It is shown that the numerical method is able to predict correctly the amplitudes of oscillation in several operating conditions: direct and parametric resonances. Frequency response curves are obtained when the belt is harmonically excited close to the first and second linear natural frequency. The damping ratio and the linear frequencies are identified at zero axial speed.

Nonlinear resonance and parametric instability of a power transmission belt: Numerical analysis with experiments / Vestroni, F.; Pellicano, F.; Catellani, G.; Fregolent, A.. - 6:(2001), pp. 2191-2198. (Intervento presentato al convegno 18th Biennial Conference on Mechanical Vibration and Noise tenutosi a Pittsburgh, PA, usa nel 2001).

Nonlinear resonance and parametric instability of a power transmission belt: Numerical analysis with experiments

Pellicano F.;Catellani G.;
2001

Abstract

In this paper a numerical approach is developed to forecast the dynamic behavior of a power transmission belt running on eccentric pulleys. Basic partial differential equations are developed, considering the elastic effect of the lower branch of the belt. Nonlinear resonances and dynamic instabilities are analyzed in detail using a high dimensional discrete model, obtained through the Galerkin procedure. The numerical analysis is performed by means of direct simulations and a continuation software. Numerical results are compared with available experimental data. It is shown that the numerical method is able to predict correctly the amplitudes of oscillation in several operating conditions: direct and parametric resonances. Frequency response curves are obtained when the belt is harmonically excited close to the first and second linear natural frequency. The damping ratio and the linear frequencies are identified at zero axial speed.
2001
18th Biennial Conference on Mechanical Vibration and Noise
Pittsburgh, PA, usa
2001
6
2191
2198
Vestroni, F.; Pellicano, F.; Catellani, G.; Fregolent, A.
Nonlinear resonance and parametric instability of a power transmission belt: Numerical analysis with experiments / Vestroni, F.; Pellicano, F.; Catellani, G.; Fregolent, A.. - 6:(2001), pp. 2191-2198. (Intervento presentato al convegno 18th Biennial Conference on Mechanical Vibration and Noise tenutosi a Pittsburgh, PA, usa nel 2001).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1248813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact