The scientific interest on the plant Cannabis sativa L., and in particular on its non-psychoactive or fibre-type variety (hemp), has been highly increasing in recent years, due to the pharmaceutical and nutraceutical potential of its bioactive compounds. This plant is indeed characterized by a very rich chemical composition, which encompasses different classes of constituents, such as cannabinoids and terpenes. In this context, the bioanalytical testing of hemp extracts can be difficult and time-consuming. Effect-directed analysis (EDA) by the combination of high-performance thin-layer chromatography (HPTLC) with biological and enzymatic assays represents one of the latest tools available for the rapid bioprofiling of complex matrices, such as plant extracts. In this ambit, the aim of this project was the non-targeted screening of inflorescence extracts from ten different hemp varieties for components exhibiting radical scavenging, antibacterial, enzyme inhibiting and estrogen-like effects. By HPTLC-EDA, the hemp samples exhibited strong antibacterial activities against both Gram-positive Bacillus subtilis and especially Gram-negative Aliivibrio fischeri bacteria, and also estrogen-like activity. They also inhibited α- and β-glucosidase, tyrosinase and acetylcholinesterase. The characterization of two prominently multipotent bioactive compound zones was finally achieved by HPTLC-HRMS and preliminary assigned as cannabidiolic acid and cannabidivarinic acid.
Effect-directed analysis of bioactive compounds in Cannabis sativa L. by high-performance thin-layer chromatography / Corni, G.; Brighenti, V.; Pellati, F.; Morlock, G. E.. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 1873-3778. - 1629:(2020), pp. N/A-N/A. [10.1016/j.chroma.2020.461511]
Effect-directed analysis of bioactive compounds in Cannabis sativa L. by high-performance thin-layer chromatography
Brighenti V.;Pellati F.
;
2020
Abstract
The scientific interest on the plant Cannabis sativa L., and in particular on its non-psychoactive or fibre-type variety (hemp), has been highly increasing in recent years, due to the pharmaceutical and nutraceutical potential of its bioactive compounds. This plant is indeed characterized by a very rich chemical composition, which encompasses different classes of constituents, such as cannabinoids and terpenes. In this context, the bioanalytical testing of hemp extracts can be difficult and time-consuming. Effect-directed analysis (EDA) by the combination of high-performance thin-layer chromatography (HPTLC) with biological and enzymatic assays represents one of the latest tools available for the rapid bioprofiling of complex matrices, such as plant extracts. In this ambit, the aim of this project was the non-targeted screening of inflorescence extracts from ten different hemp varieties for components exhibiting radical scavenging, antibacterial, enzyme inhibiting and estrogen-like effects. By HPTLC-EDA, the hemp samples exhibited strong antibacterial activities against both Gram-positive Bacillus subtilis and especially Gram-negative Aliivibrio fischeri bacteria, and also estrogen-like activity. They also inhibited α- and β-glucosidase, tyrosinase and acetylcholinesterase. The characterization of two prominently multipotent bioactive compound zones was finally achieved by HPTLC-HRMS and preliminary assigned as cannabidiolic acid and cannabidivarinic acid.File | Dimensione | Formato | |
---|---|---|---|
2020_Corni_JCA.pdf
Accesso riservato
Descrizione: Cannabis HPTLC JCA
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris