Introduction: Cannabidiol (CBD), the nonintoxicating constituent of cannabis, is largely employed for pharmaceutical and cosmetic purposes. CBD can be extracted from the plant or chemically synthesized. Impurities of psychotropic cannabinoids Δ9-tetrahydrocannabinol (Δ9-THC) and Δ8-THC have been found in extracted CBD, thus hypothesizing a possible contamination from the plant. Materials and Methods: In this study, synthetic and extracted CBD samples were analyzed by ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry and the parameters that can be responsible of the conversion of CBD into THC were evaluated by an accelerated stability test. Results: In synthetic and extracted CBD no trace of THC species was detected. In contrast, CBD samples stored in the dark at room temperature on the benchtop for 3 months showed the presence of such impurities. Experiments carried out under inert atmosphere in the absence of humidity or carbon dioxide led to no trace of THC over time even at high temperature. Conclusions: The results suggested that the copresence of carbon dioxide and water from the air could be the key for creating the acidic environment responsible for the cyclization of CBD. These findings suggest that it might be appropriate to review the storage conditions indicated on the label of commercially available CBD.

Origin of Δ9-tetrahydrocannabinol impurity in synthetic cannabidiol / Citti, C.; Russo, F.; Linciano, P.; Strallhofer, S. S.; Tolomeo, F.; Forni, F.; Vandelli, M. A.; Gigli, G.; Cannazza, G.. - In: CANNABIS AND CANNABINOID RESEARCH. - ISSN 2378-8763. - 6:1(2021), pp. 28-39. [10.1089/can.2020.0021]

Origin of Δ9-tetrahydrocannabinol impurity in synthetic cannabidiol

Forni F.;Vandelli M. A.;Cannazza G.
2021

Abstract

Introduction: Cannabidiol (CBD), the nonintoxicating constituent of cannabis, is largely employed for pharmaceutical and cosmetic purposes. CBD can be extracted from the plant or chemically synthesized. Impurities of psychotropic cannabinoids Δ9-tetrahydrocannabinol (Δ9-THC) and Δ8-THC have been found in extracted CBD, thus hypothesizing a possible contamination from the plant. Materials and Methods: In this study, synthetic and extracted CBD samples were analyzed by ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry and the parameters that can be responsible of the conversion of CBD into THC were evaluated by an accelerated stability test. Results: In synthetic and extracted CBD no trace of THC species was detected. In contrast, CBD samples stored in the dark at room temperature on the benchtop for 3 months showed the presence of such impurities. Experiments carried out under inert atmosphere in the absence of humidity or carbon dioxide led to no trace of THC over time even at high temperature. Conclusions: The results suggested that the copresence of carbon dioxide and water from the air could be the key for creating the acidic environment responsible for the cyclization of CBD. These findings suggest that it might be appropriate to review the storage conditions indicated on the label of commercially available CBD.
6
1
28
39
Origin of Δ9-tetrahydrocannabinol impurity in synthetic cannabidiol / Citti, C.; Russo, F.; Linciano, P.; Strallhofer, S. S.; Tolomeo, F.; Forni, F.; Vandelli, M. A.; Gigli, G.; Cannazza, G.. - In: CANNABIS AND CANNABINOID RESEARCH. - ISSN 2378-8763. - 6:1(2021), pp. 28-39. [10.1089/can.2020.0021]
Citti, C.; Russo, F.; Linciano, P.; Strallhofer, S. S.; Tolomeo, F.; Forni, F.; Vandelli, M. A.; Gigli, G.; Cannazza, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1247762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact