The integrative analysis of DNA copy number levels and transcriptional profiles, in context of the physical location of genes in a genome, still represents a challenge in the bioinformatics arena. A computational framework based on locally adaptive statistical procedures (Locally Adaptive Statistical Procedure, LAP and Global Smoothing Copy Number, GLSCN) for the identification of imbalanced chromosomal regions in single samples is described. The application of LAP and GLSCN to the integrative analysis of clear cell renal carcinoma patients allowed identifying chromosomal regions that are directly involved in known and novel chromosomal aberrations characteristic of tumors.

A computational procedure for the integrative analysis of genomic data at the single sample level / Zampieri, M.; Spinelli, R.; Cifola, I.; Peano, C.; Basso, D.; Rocco, F.; Ferrero, S.; Fasoli, E.; Mocarelli, P.; Battaglia, C.; Bicciato, S.. - 40:4(2007), pp. 243-248. (Intervento presentato al convegno 10th IFAC Symposium on Computer Applications in Biotechnology, 2007 tenutosi a mex nel 2007) [10.3182/20070604-3-mx-2914.00042].

A computational procedure for the integrative analysis of genomic data at the single sample level

Bicciato S.
2007

Abstract

The integrative analysis of DNA copy number levels and transcriptional profiles, in context of the physical location of genes in a genome, still represents a challenge in the bioinformatics arena. A computational framework based on locally adaptive statistical procedures (Locally Adaptive Statistical Procedure, LAP and Global Smoothing Copy Number, GLSCN) for the identification of imbalanced chromosomal regions in single samples is described. The application of LAP and GLSCN to the integrative analysis of clear cell renal carcinoma patients allowed identifying chromosomal regions that are directly involved in known and novel chromosomal aberrations characteristic of tumors.
2007
10th IFAC Symposium on Computer Applications in Biotechnology, 2007
mex
2007
40
243
248
Zampieri, M.; Spinelli, R.; Cifola, I.; Peano, C.; Basso, D.; Rocco, F.; Ferrero, S.; Fasoli, E.; Mocarelli, P.; Battaglia, C.; Bicciato, S.
A computational procedure for the integrative analysis of genomic data at the single sample level / Zampieri, M.; Spinelli, R.; Cifola, I.; Peano, C.; Basso, D.; Rocco, F.; Ferrero, S.; Fasoli, E.; Mocarelli, P.; Battaglia, C.; Bicciato, S.. - 40:4(2007), pp. 243-248. (Intervento presentato al convegno 10th IFAC Symposium on Computer Applications in Biotechnology, 2007 tenutosi a mex nel 2007) [10.3182/20070604-3-mx-2914.00042].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1474667016328841-main.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 461.13 kB
Formato Adobe PDF
461.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1247664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact