Blends of reduced graphene oxide (RGO) and poly(3-hexylthiophene) (P3HT) are used as the active layer of field-effect transistors (FETs). By using sequential deposition of the two components, the density of RGO sheets can be tuned linearly, thereby modulating their contribution to the charge transport in the transistors, and the onset of charge percolation. The surface potential of RGO, P3HT and source–drain contacts is measured on the nanometric scale with Kelvin Probe Force Microscopy (KPFM), and correlated with the macroscopic performance of the FETs. KPFM is also used to monitor the potential decay along the channel in the working FETs.
Charge transport in graphene-polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization / Liscio, A.; Veronese, G. P.; Treossi, E.; Suriano, F.; Rossella, F.; Bellani, V.; Rizzoli, R.; Samorì, P.; Palermo, V.. - In: JOURNAL OF MATERIALS CHEMISTRY. - ISSN 0959-9428. - 21:9(2011), pp. 2924-2931. [10.1039/C0JM02940H]
Charge transport in graphene-polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization
F. Rossella;
2011
Abstract
Blends of reduced graphene oxide (RGO) and poly(3-hexylthiophene) (P3HT) are used as the active layer of field-effect transistors (FETs). By using sequential deposition of the two components, the density of RGO sheets can be tuned linearly, thereby modulating their contribution to the charge transport in the transistors, and the onset of charge percolation. The surface potential of RGO, P3HT and source–drain contacts is measured on the nanometric scale with Kelvin Probe Force Microscopy (KPFM), and correlated with the macroscopic performance of the FETs. KPFM is also used to monitor the potential decay along the channel in the working FETs.File | Dimensione | Formato | |
---|---|---|---|
Charge transport in graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization.pdf
Accesso riservato
Dimensione
542.16 kB
Formato
Adobe PDF
|
542.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris