Random assemblies of vertically aligned core-shell GaAs-AlGaAs nanowires displayed an optical response dominated by strong oscillations of the reflected light as a function of the incident angle. In particular, angle-resolved specular reflectance measurements showed the occurrence of periodic modulations in the polarization-resolved spectra of reflected light for a surprisingly wide range of incident angles. Numerical simulations allowed for identifying the geometrical features of the core-shell nanowires leading to the observed oscillatory effects in terms of core and shell thickness as well as the tapering of the nanostructure. The present results indicate that randomly displaced ensembles of nanoscale heterostructures made of III-V semiconductors can operate as optical metamirrors, with potential for sensing applications.
Strong modulations of optical reflectance in tapered core-shell nanowires / Floris, F.; Fornasari, L.; Bellani, V.; Marini, A.; Banfi, F.; Marabelli, F.; Beltram, F.; Ercolani, D.; Battiato, S.; Sorba, L.; Rossella, F.. - In: MATERIALS. - ISSN 1996-1944. - 12:21(2019), pp. 1-11. [10.3390/ma12213572]
Strong modulations of optical reflectance in tapered core-shell nanowires
Ercolani D.;Sorba L.;Rossella F.
2019
Abstract
Random assemblies of vertically aligned core-shell GaAs-AlGaAs nanowires displayed an optical response dominated by strong oscillations of the reflected light as a function of the incident angle. In particular, angle-resolved specular reflectance measurements showed the occurrence of periodic modulations in the polarization-resolved spectra of reflected light for a surprisingly wide range of incident angles. Numerical simulations allowed for identifying the geometrical features of the core-shell nanowires leading to the observed oscillatory effects in terms of core and shell thickness as well as the tapering of the nanostructure. The present results indicate that randomly displaced ensembles of nanoscale heterostructures made of III-V semiconductors can operate as optical metamirrors, with potential for sensing applications.File | Dimensione | Formato | |
---|---|---|---|
materials-12-03572.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris